Skip to main content
Log in

Quantum chemical studies on the role of water microsolvation in interactions between group 12 metal species (Hg2+, Cd2+, and Zn2+) and neutral and deprotonated cysteines

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Interactions of group 12 metal(II) species (Hg2+, Cd2+, Zn2+, Hg(H2O) 2+ n , Cd(H2O) 2+ n , and Zn(H2O) 2+ n (n = 1, 2) with neutral (RSH), deprotonated (RS), and doubly deprotonated cysteine species (abbreviated as “H2cys”, “Hcys”, and “cys2−”, respectively) are examined with the Becke three-parameter Lee–Yang–Parr (B3LYP) hybrid functional after preliminary screening in a conformation analysis with the Parameterized Model number 3 (PM3) semiempirical method. Effects of water on aqueous solution are evaluated by microsolvation and polarized continuum model (PCM) approaches. In the most stable conformations of M(H2cys)2+ and M(Hcys)+ complexes (M = Hg2+, Cd2+, and Zn2+), the SH group of the cysteine moiety is already deprotonated and undergoes strong binding with the metal ion. Among Hg(H2cys)2+ complexes, cysteine complexes of Hg2+ without deprotonation of the SH group and mercury(II) carboxylato-type structures are at least 83 and 117 kJ/mol less stable in energy than the most stable complex (B3LYP/6-311++G(d,p)-SDD+d+f//B3LYP/6-31G(d)-SDD+d). Although Zn2+ binds more strongly than Hg2+ to a H2cys molecule at the high-level CCSD(T)/6-311++G(d,p)-SDD+d+f//B3LYP/6-311++G(d,p)-SDD+d+f level, [Hg(H2O)2]2+ is stronger than [Zn(H2O)2]2+ because the deformation of [Zn(H2O)2]2+ required to bind to cys is much more than in [Hg(H2O)2]2+. Complexes with a deprotonated cysteine, M(Hcys)+ and M(cys), prefer a multidentate structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. A part of the present studies are already orally communicated.

References

  1. Zalups RK, Koropatnick J (eds) (2000) Molecular biology and toxicology of metals. Taylor & Francis, London

    Google Scholar 

  2. Walsh CT, Distefano MD, Moore MJ, Shewchuk LM, Verdine G (1988) FASEB J 2:124–130

    CAS  Google Scholar 

  3. Klaassen CD (ed) (2001) Casarett and Doull’s toxicology, 6th edn

  4. Steele RA, Opella SJ (1997) Biochemistry 36:6885–6895

    Article  CAS  Google Scholar 

  5. Lafrance-Vanasse J, Lefebvre M, Di Lello P, Sygusch J, Omichinski JG (2009) J Biol Chem 284:938–944

    Article  CAS  Google Scholar 

  6. de Montellano PRO (ed) (2005) Cytochrome P450. Kluwer/Academic/Plenum, New York

    Google Scholar 

  7. Choe Y-K, Nagase S (2005) J Comput Chem 26:1600–1611

    Article  CAS  Google Scholar 

  8. Yanai TK, Mori S (2008) Chem Asian J 3:1900–1911

    Article  CAS  Google Scholar 

  9. Yanai TK, Mori S (2009) Chem Eur J 15:4464–4473

    Article  CAS  Google Scholar 

  10. Chan J, Huang Z, Merrifield ME, Salgado MT, Stillman MJ (2002) Coord Chem Rev 233–234:319–339

    Article  Google Scholar 

  11. Henkel G, Krebs B (2004) Chem Rev 104:801–824

    Article  CAS  Google Scholar 

  12. Stillman MJ, Shaw CF III, Suzuki KT (eds) (1991) Metallothioneins. VCH, New York

    Google Scholar 

  13. Zalups RK, Barfuss DW (1996) Toxicology 109:15–29

    Article  CAS  Google Scholar 

  14. Oyama Y, Nakata M, Sakamoto M, Chikahisa L, Miyoshi N, Satoh M (1998) Environ Toxicol Pharmacol 6:221–227

    Article  CAS  Google Scholar 

  15. Zalups RK, Barfuss DW (1995) J Toxicol Environ Health 44:401–413

    Article  CAS  Google Scholar 

  16. Bridges CC, Zalups RK (2010) J. Toxicol Environ Health Part B 13:385–410

    Article  CAS  Google Scholar 

  17. Clarkson TW, Magos L (2006) Crit Rev Toxicol 36:609–662

    Article  CAS  Google Scholar 

  18. Aschner M, Clarkson TW (1988) Brain Res 462:31–39

    Article  CAS  Google Scholar 

  19. Hirayama K (1980) Toxicol Appl Pharmocol 55:318–323

    Article  CAS  Google Scholar 

  20. Kerr KA, Ashmore JP, Koetzle TF (1975) Acta Cryst B31:2022–2026

    CAS  Google Scholar 

  21. Noguera M, Rodríguez-Santiago L, Sodupe M, Bertran J (2001) J Mol Struct (THEOCHEM) 537:307–318

    Article  CAS  Google Scholar 

  22. Fernández-Ramos A, Cabaleiro-Lagoa E, Hermida-Ramóna JM, Martínez-Núñeza E, Peña-Gallegoa A (2000) J Mol Struct (THEOCHEM) 498:191–200

    Article  Google Scholar 

  23. Pecul M (2006) Chem Phys Lett 418:1–10

    Article  CAS  Google Scholar 

  24. Sanz ME, Blanco S, López JC, Alonso JL (2008) Angew Chem Int Ed 47:6216–6220

    Article  CAS  Google Scholar 

  25. Taylor NJ, Wong YS, Chieh PC, Carty AJ (1975) J Chem Soc Dalton Trans 438–442

  26. Taylor NJ, Carty AJ (1977) J Am Chem Soc 99:6143–6145

    Article  CAS  Google Scholar 

  27. Katono Y, Inoue Y, Chujo R (1977) Polym J 9:471–478

    Article  CAS  Google Scholar 

  28. Natusch DFS, Porter LJ (1971) J Chem Soc A 2527–2535

  29. Rubius FM, Verduci C, Giampiccolo R, Pulvirenti S, Brambilla G, Colombi A (2004) J Am Soc Mass Spectrom 15:288–300

    Article  Google Scholar 

  30. Cheesman BV, Arnold AP, Rabenstein DL (1988) J Am Chem Soc 110:6359–6364

    Article  CAS  Google Scholar 

  31. Jalilehvand F, Leung BO, Izadifard M, Damian E (2006) Inorg Chem 45:66–73

    Article  CAS  Google Scholar 

  32. Leung BO, Jalilehvand F, Szilagyi RK (2008) J Phys Chem B 112:4770–4778

    Article  CAS  Google Scholar 

  33. Hughes W Jr (1947) J Am Chem Soc 69:1836–1837

    Article  CAS  Google Scholar 

  34. Nriagu JO (ed) (1979) The biogeochemistry of mercury in the environment. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  35. Oram PD, Fang X, Fernando Q, Letkeman P, Letkeman D (1996) Chem Res Toxicol 9:709–712

    Article  CAS  Google Scholar 

  36. Fuhr BJ, Rabenstein DL (1973) J Am Chem Soc 95:6944–6950

    Article  CAS  Google Scholar 

  37. Mah V, Jalilehvand F (2010) Chem Res Toxicol 23:1815–1823

    Article  CAS  Google Scholar 

  38. Tarbouriech N, Curran J, Ruigrok RWH, Burmeister WP (2000) Nat Struct Biol 7: 777–781. 1EZJ in Protein Data Bank

    Google Scholar 

  39. Zalups RK, Barfuss DW (2002) J Toxicol Environ Health Part A 65:1471–1490

    Article  CAS  Google Scholar 

  40. Martelli A, Rousselet E, Dyeke C, Bouron A, Moulis J-M (2006) Biochimie 88:1807–1814

    Article  CAS  Google Scholar 

  41. Bottari E, Festa MR (1997) Talanta 44:1705–1718

    Article  CAS  Google Scholar 

  42. Jalilehvand F, Mah V, Leung BO, Mink J, Bernard GM, Hajba L (2009) Inorg Chem 48:4219–4230

    Article  CAS  Google Scholar 

  43. Barglik-Chory C, Remenyi C, Strohm H, Müller G (2004) J Phys Chem B 108:7637–7640

    Article  CAS  Google Scholar 

  44. Cai Z-X, Yang H, Zhang Y, Yan X-P (2006) Anal Chim Acta 559:234–239

    Article  CAS  Google Scholar 

  45. Plapp BV, Eklund H, Jones TA, Branden CI (1983) J Biol Chem 258:5537–5547

    CAS  Google Scholar 

  46. Ramaswamy S, Eklund H, Plapp BV (1994) Biochemistry 33:5230–5237

    Article  CAS  Google Scholar 

  47. Agarwal PK, Webb SP, Hammes-Schiffer S (2000) J Am Chem Soc 122:4803–4812

    Article  CAS  Google Scholar 

  48. Christianson DW, Lipscomb WN (1986) Proc Natl Acad Sci USA 83:7568–7572

    Article  CAS  Google Scholar 

  49. Cameron AD, Ridderstrom M, Olin B, Kavarana MJ, Creighton DJ, Mannervik B (1999) Biochemistry 38:13480–13490

    Article  CAS  Google Scholar 

  50. Venugopal B, Luckey TD (1978) Metal toxicity in mammals 2, chemical toxicity of metals and metalloids. Plenum Press, New York, USA

    Google Scholar 

  51. Cerda BA, Wesdemiotis C (1995) J Am Chem Soc 117:9734–9739

    Article  CAS  Google Scholar 

  52. Hoyau S, Ohanessian G (1997) J Am Chem Soc 119:2016–2024

    Article  CAS  Google Scholar 

  53. Zimmermann T, Zeizinger M, Burda JV (2005) J Inorg Biochem 99:2184–2196

    Article  CAS  Google Scholar 

  54. Spezia R, Tournois G, Cartailler T, Tortajada J, Jeanvoine Y (2006) J Phys Chem A 110:9727–9735

    Article  CAS  Google Scholar 

  55. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  56. Belcastro M, Marino T, Russo N, Toscano M (2005) J Mass Spectr 40:300–306

    Article  CAS  Google Scholar 

  57. Mori S, Kishi T, Endoh T (2004) 30th annual meeting of the society of toxicology of Japan, Sagamihara, Japan

  58. Mori S, Kishi T, Endoh T, Sudou K (2004) 84th annual meeting of Chemical Society of Japan, Nishinomiya, Japan

  59. Mori S, Endoh T, Kishi T (2004) 7th international conference on mercury as a global pollutant, Ljubljana, Slovenia

  60. Hoffmeyer RE, Singh SP, Doonan CJ, Ross ARS, Hughes RJ, Pickering IJ, George GN (2006) Chem Res Toxicol 19:753–759

    Article  CAS  Google Scholar 

  61. Bridges CC, Zalups RK (2006) Chem Res Toxicol 19:1117–1118

    Article  CAS  Google Scholar 

  62. Hoffmeyer RE, Singh SP, Doonan CJ, Pickering IJ, George GN, Ross ARS, Hughes RJ (2006) Chem Res Toxicol 19:1118–1120

    Article  CAS  Google Scholar 

  63. Krupp EM, Miline BF, Mestrot A, Meharg AA, Feldmann J (2008) Anal Bioanal Chem 390:1753–1766

    Article  CAS  Google Scholar 

  64. Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H (1993) Mol Phys 80:1431–1441

    Article  CAS  Google Scholar 

  65. Ramírez J-Z, Vargas R, Garza J, Hay BP (2006) J Chem Theory Comput 2:1510–1519

    Article  Google Scholar 

  66. Gourlaouen C, Piquemak J-P, Saue T, Parisel O (2005) J Comput Chem 27:142–156

    Article  Google Scholar 

  67. Stricks W, Kolthoff IM (1953) J Am Chem Soc 75:5673–5681

    Article  CAS  Google Scholar 

  68. Walker MD, Williams DR (1974) J Chem Soc Dalton Trans 1186–1189

  69. Lenz GR, Martell AE (1964) Biochemistry 3:745–750

    Article  CAS  Google Scholar 

  70. Smith RM, Martell AE (2003) NIST critically selected stability constants of metal complexes database, Version 7.0

  71. Bottari E, Festa MR (1997) Talanta 44:1705–1718

    Article  CAS  Google Scholar 

  72. Starý J, Kratzer K (1988) J Radioanal Nucl Chem Lett 126:69–75

    Article  Google Scholar 

  73. Berthon G (1995) Pure Appl Chem 67:1117–1240

    Article  CAS  Google Scholar 

  74. Rulíšek L, Havlas Z (2002) J Phys Chem A 106:3855–3866

    Article  Google Scholar 

  75. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem B 111:9146–9152

    Article  CAS  Google Scholar 

  76. Tai H-C, Lim C (2006) J Phys Chem A 110:452–462

    Article  CAS  Google Scholar 

  77. Dimakis N, Farooqi MJ, Garza ES, Bunker G (2008) J Chem Phys 128:115104

    Article  Google Scholar 

  78. Ishimori K-i, Mori S, Ito Y, Ohashi K, Imura H (2009) Talanta 78:1272–1279

    Article  CAS  Google Scholar 

  79. Marino T, Toscano M, Russo N, Grand A (2006) J Phys Chem B 110:24666–24673

    Article  CAS  Google Scholar 

  80. Dudev T, Lim C (2007) J Am Chem Soc 129:12497–12504

    Article  CAS  Google Scholar 

  81. Schmitt M, Böhm M, Ratzer C, Vu C, Kalkman I, Meerts WL (2005) J Am Chem Soc 127:10356–10364

    Article  CAS  Google Scholar 

  82. Ahn D-S, Park S-W, Jeon I-S, Lee M-K, Kim N-H, Han Y-H, Lee S (2003) J Phys Chem B 107:14109–14118

    Article  CAS  Google Scholar 

  83. Michaux C, Wouters J, Perpete EA, Jacquemin D (2008) J Phys Chem B 112:9896–9902

    Article  CAS  Google Scholar 

  84. Bachrach SM, Nguyen TT, Demoin DW (2009) J Phys Chem A 113:6172–6181

    Article  CAS  Google Scholar 

  85. Moisés CL, Ramos DR, Santaballa JA (2006) Chem Phys Lett 417:28–33

    Article  Google Scholar 

  86. Rai AK, Fei W, Lu Z, Lin Z (2009) Theor Chem Acc 124:37–47

    Article  CAS  Google Scholar 

  87. Gao B, Wyttenbach T, Bowers MT (2009) J Am Chem Soc 131:4695–4701

    Article  CAS  Google Scholar 

  88. Shepler BC, Wright AD, Balabanov NB, Peterson KA (2007) J Phys Chem A 111:11342–11349

    Article  CAS  Google Scholar 

  89. Spartan’04, Wavefuntion Inc, Irvine

  90. See Cramer CJ (2002) Essentials of computational chemistry. Wiley, Chichester

    Google Scholar 

  91. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. John Wiley, New York

    Google Scholar 

  92. Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  93. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  94. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  95. Takano Y, Houk KN (2005) J Chem Theory Comput 1:70–77

    Article  Google Scholar 

  96. Gaussian 03, Revision B.03, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liashenko G Liu, Piskorz AP, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford

  97. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926. And references cited therein

    Google Scholar 

  98. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  99. Pearson PG (1963) J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  100. Richens DT (1997) The chemistry of aqua ions. Wiley, Chichester

    Google Scholar 

  101. Eisler R, Hennekey RJ (1977) Arch Environ Contam Toxicol 6:315–323

    Article  CAS  Google Scholar 

  102. Lewis DFV, Dobrota M, Taylor MG, Parke DV (1999) Environ Toxicol Chem 18:2199–2204

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid No. 19550004 for Scientific Research from JSPS and by Scientific Research on Priority Areas “Molecular Theory for Real Systems”, No. 20038005 from MEXT. The generous allotment of computation time from the Research Center for Computational Science (RCCS), the National Institutes of Natural Sciences, Japan, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Mori.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mori, S., Endoh, T., Yaguchi, Y. et al. Quantum chemical studies on the role of water microsolvation in interactions between group 12 metal species (Hg2+, Cd2+, and Zn2+) and neutral and deprotonated cysteines. Theor Chem Acc 130, 279–297 (2011). https://doi.org/10.1007/s00214-011-0975-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0975-z

Keywords

Navigation