Skip to main content
Log in

The [2 + 2 + 2] mechanisms of trimerization of three ethynes and monosilaethylenes

Homologous concerted mechanism and polarized one-step mechanism

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The mechanisms of [2 + 2 + 2] reactions of three ethynes and monosilaethylenes to form benzene and 1,3,5-trisilacyclohexane were studied by ab initio MO methods. The reaction mechanisms were analyzed by configuration interaction/localized molecular orbital/CASSCF calculations. Although the [2 + 2 + 2] reaction of ethyne is typically “homologous” concerted, that of monosilaethylene is polarized (ionic-cyclic) one-step reaction. In addition, the aromaticity along the intrinsic reaction coordinate pathway was studied using the index of deviation from aromaticity. Although the transition state of trimerization of ethyne does not have an aromatic nature for the σ- and π-bonds formation system, the crossing point of the σ-bond formation and π-bond breaking shows an aromatic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Woodward RB, Hoffmann R (1970) The conservation of orbital symmetry. Verlage Chemie, Weinheim

    Google Scholar 

  2. Berthelot M (1866) C R Acad Sci 62:905. doi:10.1002/jlac.18661390303 (see: http://www.biodiversitylibrary.org/item/23761#page/913/mode/1up)

  3. Berthelot M (1866) Ueber die Einwirkung der Hitze auf einige Kohlenwasserstoffe. Justus Liebigs Annalen der Chemie 139:272–282. (see: http://www.archive.org/details/annalenderchemi11liebgoog)

  4. Zimmerman HE (1971) Acc Chem Res 4:272

    Article  CAS  Google Scholar 

  5. Houk KN, Gandour R, Strozier R, Rondan N, Paquette L (1979) J Am Chem Soc 101:6797

    Article  CAS  Google Scholar 

  6. Bach RD, Wolber GJ, Schleyer HB (1985) J Am Chem Soc 107:2837

    Article  CAS  Google Scholar 

  7. Ioffe A, Shaik S (1992) J Chem Soc Perkin Trans 2:2101

    Google Scholar 

  8. Wagenseller PE, Birney DM, Roy D (1995) J Org Chem 60:2853

    Article  CAS  Google Scholar 

  9. Jiao H, Schleyer PvR (1998) J Phys Org Chem 11:655

    Article  CAS  Google Scholar 

  10. Morao I, Cossio F (1999) J Org Chem 64:1868

    Article  CAS  Google Scholar 

  11. Sawicka D, Wilsey S, Houk KN (1999) J Am Chem Soc 121:864

    Article  CAS  Google Scholar 

  12. Sawicka D, Li Y, Houk KN (1999) J Chem Soc Perkin Trans 2:2349

    Google Scholar 

  13. Cioslowski J, Liu G, Moncrieff D (2000) Chem Phys Lett 316:536

    Article  CAS  Google Scholar 

  14. Havenith R, Fowler P, Jenneskens L, Steiner E (2003) J Phys Chem A 107:1867

    Article  CAS  Google Scholar 

  15. Santos JC, Polo V, Andres J (2005) Chem Phys Lett 406:393

    Article  CAS  Google Scholar 

  16. Eichberg MJ, Houk KN, Lehmann J, Leonard PW, Marker A, Norton JE, Sawicka D, Vollhardt KPC, Whitener GD, Wolff S (2007) Angew Chem Int Ed 46:6894

    Article  CAS  Google Scholar 

  17. Donoso-Tauda O, Aizman A, Escobar CA, Santos JC (2009) Chem Phys Lett 469:219

    Article  CAS  Google Scholar 

  18. Sakai S (2002) J Phys Chem A 106:10370

    Article  CAS  Google Scholar 

  19. Sakai S (2002) J Phys Chem A 106:11526

    Article  CAS  Google Scholar 

  20. Sakai S (2003) J Phys Chem A 107:9422

    Article  CAS  Google Scholar 

  21. Sakai S (2005) J Mol Struc (THEOCHEM) 715:101

    Article  CAS  Google Scholar 

  22. Sakai S (2006) J Phys Chem A 110:6339

    Article  CAS  Google Scholar 

  23. Fias S, Damme SV, Bultinck P (2008) J Comput Chem 29:358

    Article  CAS  Google Scholar 

  24. Hoffmann MR, Yoshioka Y, Schaefer HF III (1983) J Am Chem Soc 105:1084

    Article  CAS  Google Scholar 

  25. Roos B, (1987) In Advances in Chemical Physics; KP Lawley Ed; Wiley: New York, vol. 69, Part II, p 399

  26. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  27. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  28. Nakano H (1993) J Chem Phys 99:7983

    Article  CAS  Google Scholar 

  29. Hariharan PC, Pople JA (1973) Theo Chim Acta 28:213

    Article  CAS  Google Scholar 

  30. Gordon MS (1980) Chem Phys Lett 76:163

    Article  CAS  Google Scholar 

  31. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  32. Fukui K (1970) J Phys Chem 74:4161

    Article  CAS  Google Scholar 

  33. Ishida K, Morokuma K, Komornicki A (1977) J Chem Phys 66:2153

    Article  CAS  Google Scholar 

  34. Cundari T, Gordon M (1991) J Am Chem Soc 113:5231

    Article  CAS  Google Scholar 

  35. Sakai S (1998) Chem Phys Lett 287:263

    Article  CAS  Google Scholar 

  36. Sakai S, Takane S (1999) J Phys Chem A 103:2878

    Article  CAS  Google Scholar 

  37. Sakai S (2000) J Phys Chem A 104:922

    Article  CAS  Google Scholar 

  38. Sakai S (2002) Int J Quantum Chem 90:549

    Article  CAS  Google Scholar 

  39. Boys SF (1960) Rev Mod Phys 32:296

    Article  CAS  Google Scholar 

  40. Foster JM, Boys SF (1960) Rev Mod Phys 32:300

    Article  CAS  Google Scholar 

  41. Lee PS, Sakai S, Horstermann P, Roth WR, Kallel EA, Houk KN (2003) J Am Chem Soc 125:5839

    Article  CAS  Google Scholar 

  42. Sakai S, Nguyen MT (2004) J Phys Chem A 108:9169

    Article  CAS  Google Scholar 

  43. Wakayama H, Sakai S (2007) J Phys Chem A 111:13575

    Article  CAS  Google Scholar 

  44. Sakai S, Hikida T (2008) J Phys Chem A 112:10985

    Article  CAS  Google Scholar 

  45. Yamada T, Udagawa T, Sakai S (2010) Phys Chem Chem Phys 12:3799

    Article  CAS  Google Scholar 

  46. Sakai S, Yamada T (2008) Phys Chem Chem Phys 10:3861

    Article  CAS  Google Scholar 

  47. Minkin VJ, Glukhovtsev MN, Simkin BY (1994) Aromaticity and antiaromaticity: electronic and structural aspects. Wiley, New York

    Google Scholar 

  48. Schmidt MW, Buldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomerry JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  49. Gordon MS, Schmidt MW (2005) Theory and applications of computational chemistry; the first forty years. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Elsevier, Amsterdam, pp 1167–1189

  50. Frisch KJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheseman JR, Montgomery JA, Vreven Jr T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox E, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck D, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B (2003) Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian 03; Gaussian, Inc.: Pittsburgh, PA

  51. IDA value of benzene is 0.047 and that of cyclobutadiene with rectangular type is 2.037

  52. Sawicka D, Li Y, Houk KN (1999) J Chem Soc Perkin Trans 2:2349

    Google Scholar 

Download references

Acknowledgment

The present research is supported by a Grant-in-Aid for Scientific Research from the Ministry of Education Science and Culture of Japan. The computer time was made available by the Computer Center of the Institute for Molecular Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shogo Sakai.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakai, S., Taketa, K. The [2 + 2 + 2] mechanisms of trimerization of three ethynes and monosilaethylenes. Theor Chem Acc 130, 901–907 (2011). https://doi.org/10.1007/s00214-011-0971-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0971-3

Keywords

Navigation