Skip to main content
Log in

Measuring electron sharing between atoms in first-principle simulations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Calculations of large scale electronic structure within periodic boundary conditions, mostly based on solid state physics, allow the modeling of atomic forces and molecular dynamics for atomic assemblies of 100–1000 atoms, thus providing complementary information in material and macromolecular sciences. Nevertheless, these methods lack connections with the chemistry of simple molecules as isolated entities. In order to contribute to establish a conceptual connection between solid state physics and chemistry, the calculation of the extent of electron sharing between atoms, also known as delocalization index, is performed on simple molecules and on complexes with transition metal atoms, using density functional calculations where the Kohn–Sham molecular orbitals are represented in terms of plane waves and in periodic boundary conditions. These applications show that the useful measure of electron sharing between atomic pairs can be recovered from density functional calculations using the same set-up applied to large atomic assemblies in condensed phases, with no projections of molecular orbitals onto atomic orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  2. Grotendorst J (ed) (2000) NIC series: modern methods and algorithms of quantum chemistry, vol 3. John von Neumann Institute for Computing, FZ Jülich (DE)

  3. Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757–10816

    Article  CAS  Google Scholar 

  4. Hohenberg P, Kohn W (1964) Phys Rev B 136:864–871

    Article  Google Scholar 

  5. Kohn W, Sham LJ (1965) Phys Rev A 140:1133–1138

    Article  Google Scholar 

  6. Vanderbilt D (1990) Phys Rev B 41:7892–7895

    Article  Google Scholar 

  7. Giannozzi P, De Angelis F, Car R (2004) J Chem Phys 120:5903–5915

    Article  CAS  Google Scholar 

  8. Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  9. Hoffmann R (1988) Solids and surfaces: a chemist’s view of bonding in extended structures. Wiley-VCH, New York

    Google Scholar 

  10. Matta CF, Boyd RJ (eds) (2007) Quantum theory of atoms in molecules: from solid state to DNA and drug design. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  11. Sjöstedt E, Nordström L, Singh DJ (2000) Solid State Commun 114:15–20

    Article  Google Scholar 

  12. Otero-de-la-Roza A, Blanco M, Martín Pendás A, Luaña V (2009) Comput Phys Commun 180:157–166

    Article  CAS  Google Scholar 

  13. Evarestov RA, Tupitsyn II, Bandura AV, Alexandrov VE (2006) Int J Quantum Chem 106:2191–2200

    Article  CAS  Google Scholar 

  14. Bader RFW, Stephens ME (1975) J Am Chem Soc 97:7391–7399

    Article  CAS  Google Scholar 

  15. Fulton R (1993) J Phys Chem 97:7516–7529

    Article  CAS  Google Scholar 

  16. Ángyán JG, Loos M, Mayer I (1994) J Phys Chem 98:5244–5248

    Article  Google Scholar 

  17. Fradera X, Austen MA, Bader RFW (1999) J Phys Chem A 103:304–314

    Article  CAS  Google Scholar 

  18. Silvi B (2004) Phys Chem Chem Phys 6:256–260

    Article  CAS  Google Scholar 

  19. Poater J, Duran M, Solà M, Silvi B (2005) Chem Rev 105:3911–3947

    Article  CAS  Google Scholar 

  20. Fradera X, Poater J, Simon S, Duran M, Solà M (2002) Theor Chem Acc 108:214–224

    CAS  Google Scholar 

  21. Matito E, Solà M, Salvador P, Duran M (2007) Faraday Discuss 135:325–345

    Article  CAS  Google Scholar 

  22. Borisova NP, Semenov SG (1973) Vestn. Leningr Univ (16):119–126

  23. Kar T, Ángyán JG, Sannigrahi AB (2000) J Phys Chem A 104:9953–9963

    Article  CAS  Google Scholar 

  24. Mayer I (2007) J Comput Chem 28:204–224

    Article  CAS  Google Scholar 

  25. Parr RG, Ayers PW, Nalewajski RF (2005) J Phys Chem A 109:3957–3959

    Article  CAS  Google Scholar 

  26. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  27. Matito E, Poater J, Solà M, Duran M, Salvador P (2005) J Phys Chem A 109:9904–9910

    Article  CAS  Google Scholar 

  28. Bultinck P, Cooper DL, Ponec R (2010) J Phys Chem A 114:8754–8763

    Article  CAS  Google Scholar 

  29. Bertini L, Cargnoni F, Gatti C (2007) Theor Chem Acc 117:847–884

    Article  CAS  Google Scholar 

  30. Dovesi R, Saunders VR, Roetti R, Orlando R, Zicovich-Wilson CM, Pascale F, Civalleri B, Doll K, M HN, J BI, D’Arco P, Llunell M (2009) CRYSTAL09. University of Torino, Italy. http://www.crystal.unito.it

  31. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys Condens Matter 21:395502. http://www.quantum-espresso.org

    Google Scholar 

  32. Martyna GJ, Tuckerman ME (1999) J Chem Phys 110:2810–2821

    Article  CAS  Google Scholar 

  33. Dabo I, Kozinsky B, Singh-Miller NE, Marzari N (2008) Phys Rev B 77:115139

    Article  Google Scholar 

  34. Femoni C, Kaswalder F, Iapalucci MC, Longoni G, Mehlstäubl M, Zacchini S, Ceriotti A (2006) Angew Chem Int Ed 45:2060–2062

    Article  CAS  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  36. Wolf D, Keblinski P, Phillpot SR, Eggebrecht J (1999) J Chem Phys 110:8254–8282

    Google Scholar 

  37. Makov G, Payne MC (1995) Phys Rev B 51:4014–4022

    Article  CAS  Google Scholar 

  38. Sanville E, Kenny SD, Smith R, Henkelman G (2007) J Comp Chem 28:899–908 http://theory.cm.utexas.edu/bader/

    Google Scholar 

  39. Tang W, Sanville E, Henkelman G (2009) J Phys Condens Matter 21:084204

    Article  CAS  Google Scholar 

  40. Zener C (1930) Phys Rev 36:51–56

    Article  CAS  Google Scholar 

  41. Slater J (1930) Phys Rev 36:57–64

    Article  CAS  Google Scholar 

  42. Eyring H, Walter J, Kimball G (1944) Quantum chemistry. Wiley, New York

    Google Scholar 

  43. te Velde G, Bickelhaupt F, van Gisbergen S, Fonseca Guerra C, Baerends E, Snijders J, Ziegler T (2001) J Comp Chem 22:931–967

    Article  CAS  Google Scholar 

  44. Michalak A, DeKock RL, Ziegler T (2008) J Phys Chem A 112:7256–7263

    Article  CAS  Google Scholar 

  45. Macchi P, Sironi A (2003) Coord Chem Rev 238–239:383–412

    Article  Google Scholar 

  46. Stokes HT, Decker DL, Nelson HM, Jorgensen JD (1993) Phys Rev B 47:11082–11092

    Article  CAS  Google Scholar 

  47. Poater J, Fradera X, Duran M, Solà M (2003) Chem Eur J 9:400–406

    Article  CAS  Google Scholar 

  48. Matito E, Solà M (2009) Coord Chem Rev 253:647–665

    Article  CAS  Google Scholar 

  49. Humphrey W, Dalke A, Schulten K (1996) J Molec Graphics 14:33–38. http://www.ks.uiuc.edu/Research/vmd

    Google Scholar 

  50. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been performed under the HPC-EUROPA2 project (project number: 127) with the support of the European Commission—Capacities Area—Research Infrastructures. MS acknowledges financial support from the Spanish MICINN project nr. CTQ2008-03077/BQU and the Catalan DIUE through project nr. 2009SGR637. Support for the research of MS was also received through the prize “ICREA Academia” 2009 for excellence in research funded by the DIUE of the Generalitat da Catalunya. GLP thanks P. Giannozzi (University of Udine, Italy) for the many suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miquel Solà.

Additional information

Note added in proof

Soon after the paper was accepted, it appeared a work by Baranov and Kohout (Barnanov AI, Kohout M (2011) J Comput Chem DOI: 10.1002/jcc.21784) that discusses the calculation of electron localization and delocalization indices in solid state periodic systems using plane waves and the QTAIM partition.

Rights and permissions

Reprints and permissions

About this article

Cite this article

La Penna, G., Furlan, S. & Solà, M. Measuring electron sharing between atoms in first-principle simulations. Theor Chem Acc 130, 27–36 (2011). https://doi.org/10.1007/s00214-011-0955-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0955-3

Keywords

Navigation