Skip to main content
Log in

Photophysical properties and vibrational structure of ladder-type penta p-phenylene and carbazole derivatives based on SAC-CI calculations

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The π-conjugated ladder-type molecules constitute an attractive field of organic photoactive materials. In this work, the photophysical properties of ladder-type penta-p-phenylene (LPP) and carbazole derivatives (bisindenocarbazole and diindolocarbazole) have been investigated theoretically using the symmetry-adapted cluster-configuration interaction (SAC-CI) method. The equilibrium geometries in the ground (S 0) and first excited (S 1) states were calculated to be planar, and the excitation is delocalized over the molecules. SAC-CI/DZP calculations have been applied to the absorption and emission spectra of these molecules. The absorption spectra were well reproduced in both peak positions and the shape of the absorption bands. The strong absorption is attributed to the highest occupied molecular orbital to the lowest unoccupied molecular orbital (H–L) transition; however, in carbazoles, the H–1→L transition is located below the H–L transition. The vibrational structure in the S 0S 1 absorption band of LPP was analyzed by calculating the Franck–Condon (FC) factors based on the potential energy surfaces (PESs) along the normal coordinates that are relevant to the geometry change. The vibrational structure was well reproduced by the theoretical simulation. The C–C stretching mode dominantly contributes to the vibrational structure, while the breathing motion of the molecular frame does not influence the structure. The emission energies calculated by the SAC-CI method also agree well with the experimental values. The vibrational structure in the fluorescence band was also examined by the FC analysis; the theoretical spectrum is satisfactory for the two carbazoles, while the 0–0 transition is overestimated in LPP. In diindolocarbazole, the S 2 state has a large oscillator strength, while the S 1 state has a small oscillator strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Akasaka T, Nagase S (2002) Endofullerenes: a new family of carbon clusters. Kluwer, Dordrecht

    Google Scholar 

  2. Scherf U, Müllen K (1991) Macromol Chem Rapid Commun 12:489

    Article  CAS  Google Scholar 

  3. Scherf U, Bohnen A, Müllen K (1992) Macromol Chem 193:1127

    Article  CAS  Google Scholar 

  4. Grüner J, Wittmann HF, Hamer PJ, Friend RH, Huber J, Scherf U, Müllen K, Moratti SC, Holmes AB (1994) Synth Metal 67:181

    Article  Google Scholar 

  5. Köhler A, Grüner J, Friend RH, Müllen K, Scherf U (1995) Chem Phys Lett 243:456

    Article  Google Scholar 

  6. Barth S, Bäβler H, Scherf U, Müllen K (1998) Chem Phys Lett 288:147

    Article  CAS  Google Scholar 

  7. Chmil K, Scherf U (1993) Macromol Chem Rapid Commun 14:217

    Article  CAS  Google Scholar 

  8. Chmil K, Scherf U (1997) Acta Polym 48:208

    Article  CAS  Google Scholar 

  9. Chen J-C, Lee T-S, Lin C-H (2008) Chem Eur. J 14:2777

    CAS  Google Scholar 

  10. Oyaizu K, Iwasaki T, Tsukahara Y, Tsuchida E (2004) Macromolecules 37:1257

    Article  CAS  Google Scholar 

  11. Leuninger J, Trimpin S, Rädder H-J, Müllen K (2001) Macromol Chem Phys 202:2832

    Google Scholar 

  12. Sirringhaus H, Friend RH, Wang C, Leuninger J, Müllen K (1999) J Mater Chem 9:2095

    Google Scholar 

  13. Wang H, Schaffner-Hamann C, Marchioni F, Wudl F (2001) Adv Matter 19:558

    Article  Google Scholar 

  14. Romanovskii YV, Gerhard A, Schweitzer B, Scherf U, Personov RI, Bässler H (2000) Phys Rev Lett 84:1027

    Google Scholar 

  15. Sonntag M, Strohriegl P (2006) Tetrahedron 62:8103

    Article  CAS  Google Scholar 

  16. Wakin S, Bouchard J, Blouin N, Michaud A, Leclerc M (2004) Org Lett 6:3414

  17. Belletête M, Durocher G, Hamel S, Côte M, Wakim S, Leclerc M (2005) J Chem Phys 122:104303

    Google Scholar 

  18. Belletête M, Blouin N, Boudreault P-L, Leclerc M, Durocher G (2006) J Phys Chem A 110:13696

    Article  Google Scholar 

  19. Belletête M, Wakim S, Leclerc M, Durocher G (2006) J Mol Struct THEOCHEM 760:147

    Article  Google Scholar 

  20. Poolmee P, Ehara M, Hannongbua S, Nakatsuji H (2005) Polymer 46:6474

    Article  CAS  Google Scholar 

  21. Saha B, Ehara M, Nakatsuji H (2007) J Phys Chem. A 111:5473

    CAS  Google Scholar 

  22. Poolmee P, Hannongbua S (2010) J Comp Chem 31:1945

    CAS  Google Scholar 

  23. Lu Y, Ehara M (2009) Theor Chem Acc 124:395

    Article  CAS  Google Scholar 

  24. Promkatkaew M, Suramitr S, Monhaphda TK, Namuangrukd S, Ehara M, Hannongbua S (2009) J Chem Phys 131:2243060

    Article  Google Scholar 

  25. Nakatsuji H, Hirao K (1978) J Chem Phys 68:2053

    Article  CAS  Google Scholar 

  26. Nakatsuji H (1978) Chem Phys Lett 59:362

    Article  CAS  Google Scholar 

  27. Nakatsuji H (1979) Chem Phys Lett 67:329, 334

    Google Scholar 

  28. Nakatsuji H (1997) SAC-CI method: theoretical aspects and some recent topics, in computational chemistry, review of current trends. World Scientific, Singapore

    Google Scholar 

  29. Ehara M, Hasegawa J, Nakatsuji H (2005) SAC-CI method applied to molecular spectroscopy, in theory and applications of computational chemistry: the first 40 years. Elsevier, Oxford

    Google Scholar 

  30. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  31. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  32. Foresman JB, Head-Gordon H, Pople JA (1992) J Phys Chem 96:135

    Article  CAS  Google Scholar 

  33. Hariharan PC, Pople JA (1973) Theo Chim Acta 28:213

    Article  CAS  Google Scholar 

  34. Fukuda R, Nakatsuji H (2008) J Chem Phys 128:094105

    Article  Google Scholar 

  35. Dunning Jr TH, Hay PJ (1976) In: Schaefer HF III (ed) Modern theoretical chemistry, vol 3. Plenum, New York

  36. Nakatsuji H (1983) Chem Phys 75:425

    Article  CAS  Google Scholar 

  37. Frisch MJ et al (2010) GAUSSIAN09 Rev. B.01. Gaussian Inc., Wallingford

    Google Scholar 

  38. Worth GA, Beck MH, Jackle A, Meyer H-D (2003) The MCTDH package, version 8.3. University Heidelberg, Heidelberg

    Google Scholar 

  39. Brière JF, Côtè M (2004) J Phys Chem B 108:3123

    Article  Google Scholar 

  40. Morin J-F, Beaupré S, Leclerc M, Lévesque I, D’lorio M (2002) Appl Phys Lett 80:341

    Article  CAS  Google Scholar 

  41. Blouin N, Michaud A, Wakim S, Boudreault PLT, Leclerc M, Vercelli B, Zecchin S, Zotti G (2006) Macromol Chem Phys 207:166

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by JST–CREST, a Grant–in–Aid for Scientific Research from the Japanese Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. The computations were partly performed using the Research Center for Computational Science in Okazaki, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Ehara.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poolmee, P., Ehara, M. & Nakatsuji, H. Photophysical properties and vibrational structure of ladder-type penta p-phenylene and carbazole derivatives based on SAC-CI calculations. Theor Chem Acc 130, 161–173 (2011). https://doi.org/10.1007/s00214-011-0949-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0949-1

Keywords

Navigation