Theoretical Chemistry Accounts

, Volume 130, Issue 2–3, pp 161–173 | Cite as

Photophysical properties and vibrational structure of ladder-type penta p-phenylene and carbazole derivatives based on SAC-CI calculations

  • Potjaman Poolmee
  • Masahiro EharaEmail author
  • Hiroshi Nakatsuji
Regular Article


The π-conjugated ladder-type molecules constitute an attractive field of organic photoactive materials. In this work, the photophysical properties of ladder-type penta-p-phenylene (LPP) and carbazole derivatives (bisindenocarbazole and diindolocarbazole) have been investigated theoretically using the symmetry-adapted cluster-configuration interaction (SAC-CI) method. The equilibrium geometries in the ground (S 0) and first excited (S 1) states were calculated to be planar, and the excitation is delocalized over the molecules. SAC-CI/DZP calculations have been applied to the absorption and emission spectra of these molecules. The absorption spectra were well reproduced in both peak positions and the shape of the absorption bands. The strong absorption is attributed to the highest occupied molecular orbital to the lowest unoccupied molecular orbital (H–L) transition; however, in carbazoles, the H–1→L transition is located below the H–L transition. The vibrational structure in the S 0S 1 absorption band of LPP was analyzed by calculating the Franck–Condon (FC) factors based on the potential energy surfaces (PESs) along the normal coordinates that are relevant to the geometry change. The vibrational structure was well reproduced by the theoretical simulation. The C–C stretching mode dominantly contributes to the vibrational structure, while the breathing motion of the molecular frame does not influence the structure. The emission energies calculated by the SAC-CI method also agree well with the experimental values. The vibrational structure in the fluorescence band was also examined by the FC analysis; the theoretical spectrum is satisfactory for the two carbazoles, while the 0–0 transition is overestimated in LPP. In diindolocarbazole, the S 2 state has a large oscillator strength, while the S 1 state has a small oscillator strength.


Excited states Ladder-type π-conjugated molecule SAC-CI Vibrational structure 



This study was supported by JST–CREST, a Grant–in–Aid for Scientific Research from the Japanese Society for the Promotion of Science (JSPS) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. The computations were partly performed using the Research Center for Computational Science in Okazaki, Japan.


  1. 1.
    Akasaka T, Nagase S (2002) Endofullerenes: a new family of carbon clusters. Kluwer, DordrechtGoogle Scholar
  2. 2.
    Scherf U, Müllen K (1991) Macromol Chem Rapid Commun 12:489CrossRefGoogle Scholar
  3. 3.
    Scherf U, Bohnen A, Müllen K (1992) Macromol Chem 193:1127CrossRefGoogle Scholar
  4. 4.
    Grüner J, Wittmann HF, Hamer PJ, Friend RH, Huber J, Scherf U, Müllen K, Moratti SC, Holmes AB (1994) Synth Metal 67:181CrossRefGoogle Scholar
  5. 5.
    Köhler A, Grüner J, Friend RH, Müllen K, Scherf U (1995) Chem Phys Lett 243:456CrossRefGoogle Scholar
  6. 6.
    Barth S, Bäβler H, Scherf U, Müllen K (1998) Chem Phys Lett 288:147CrossRefGoogle Scholar
  7. 7.
    Chmil K, Scherf U (1993) Macromol Chem Rapid Commun 14:217CrossRefGoogle Scholar
  8. 8.
    Chmil K, Scherf U (1997) Acta Polym 48:208CrossRefGoogle Scholar
  9. 9.
    Chen J-C, Lee T-S, Lin C-H (2008) Chem Eur. J 14:2777Google Scholar
  10. 10.
    Oyaizu K, Iwasaki T, Tsukahara Y, Tsuchida E (2004) Macromolecules 37:1257CrossRefGoogle Scholar
  11. 11.
    Leuninger J, Trimpin S, Rädder H-J, Müllen K (2001) Macromol Chem Phys 202:2832Google Scholar
  12. 12.
    Sirringhaus H, Friend RH, Wang C, Leuninger J, Müllen K (1999) J Mater Chem 9:2095Google Scholar
  13. 13.
    Wang H, Schaffner-Hamann C, Marchioni F, Wudl F (2001) Adv Matter 19:558CrossRefGoogle Scholar
  14. 14.
    Romanovskii YV, Gerhard A, Schweitzer B, Scherf U, Personov RI, Bässler H (2000) Phys Rev Lett 84:1027Google Scholar
  15. 15.
    Sonntag M, Strohriegl P (2006) Tetrahedron 62:8103CrossRefGoogle Scholar
  16. 16.
    Wakin S, Bouchard J, Blouin N, Michaud A, Leclerc M (2004) Org Lett 6:3414Google Scholar
  17. 17.
    Belletête M, Durocher G, Hamel S, Côte M, Wakim S, Leclerc M (2005) J Chem Phys 122:104303Google Scholar
  18. 18.
    Belletête M, Blouin N, Boudreault P-L, Leclerc M, Durocher G (2006) J Phys Chem A 110:13696CrossRefGoogle Scholar
  19. 19.
    Belletête M, Wakim S, Leclerc M, Durocher G (2006) J Mol Struct THEOCHEM 760:147CrossRefGoogle Scholar
  20. 20.
    Poolmee P, Ehara M, Hannongbua S, Nakatsuji H (2005) Polymer 46:6474CrossRefGoogle Scholar
  21. 21.
    Saha B, Ehara M, Nakatsuji H (2007) J Phys Chem. A 111:5473Google Scholar
  22. 22.
    Poolmee P, Hannongbua S (2010) J Comp Chem 31:1945Google Scholar
  23. 23.
    Lu Y, Ehara M (2009) Theor Chem Acc 124:395CrossRefGoogle Scholar
  24. 24.
    Promkatkaew M, Suramitr S, Monhaphda TK, Namuangrukd S, Ehara M, Hannongbua S (2009) J Chem Phys 131:2243060CrossRefGoogle Scholar
  25. 25.
    Nakatsuji H, Hirao K (1978) J Chem Phys 68:2053CrossRefGoogle Scholar
  26. 26.
    Nakatsuji H (1978) Chem Phys Lett 59:362CrossRefGoogle Scholar
  27. 27.
    Nakatsuji H (1979) Chem Phys Lett 67:329, 334Google Scholar
  28. 28.
    Nakatsuji H (1997) SAC-CI method: theoretical aspects and some recent topics, in computational chemistry, review of current trends. World Scientific, SingaporeGoogle Scholar
  29. 29.
    Ehara M, Hasegawa J, Nakatsuji H (2005) SAC-CI method applied to molecular spectroscopy, in theory and applications of computational chemistry: the first 40 years. Elsevier, OxfordGoogle Scholar
  30. 30.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  31. 31.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  32. 32.
    Foresman JB, Head-Gordon H, Pople JA (1992) J Phys Chem 96:135CrossRefGoogle Scholar
  33. 33.
    Hariharan PC, Pople JA (1973) Theo Chim Acta 28:213CrossRefGoogle Scholar
  34. 34.
    Fukuda R, Nakatsuji H (2008) J Chem Phys 128:094105CrossRefGoogle Scholar
  35. 35.
    Dunning Jr TH, Hay PJ (1976) In: Schaefer HF III (ed) Modern theoretical chemistry, vol 3. Plenum, New YorkGoogle Scholar
  36. 36.
    Nakatsuji H (1983) Chem Phys 75:425CrossRefGoogle Scholar
  37. 37.
    Frisch MJ et al (2010) GAUSSIAN09 Rev. B.01. Gaussian Inc., WallingfordGoogle Scholar
  38. 38.
    Worth GA, Beck MH, Jackle A, Meyer H-D (2003) The MCTDH package, version 8.3. University Heidelberg, HeidelbergGoogle Scholar
  39. 39.
    Brière JF, Côtè M (2004) J Phys Chem B 108:3123CrossRefGoogle Scholar
  40. 40.
    Morin J-F, Beaupré S, Leclerc M, Lévesque I, D’lorio M (2002) Appl Phys Lett 80:341CrossRefGoogle Scholar
  41. 41.
    Blouin N, Michaud A, Wakim S, Boudreault PLT, Leclerc M, Vercelli B, Zecchin S, Zotti G (2006) Macromol Chem Phys 207:166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Potjaman Poolmee
    • 1
  • Masahiro Ehara
    • 2
    Email author
  • Hiroshi Nakatsuji
    • 3
    • 4
  1. 1.Department of Chemistry, Faculty of Liberal Arts and ScienceKasetsart UniversityNakhon PathomThailand
  2. 2.Research Center of Computational ScienceInstitute for Molecular ScienceOkazakiJapan
  3. 3.Quantum Chemistry Research InstituteKyotoJapan
  4. 4.JST, CRESTTokyoJapan

Personalised recommendations