An examination of density functionals on aldol, Mannich and α-aminoxylation reaction enthalpy calculations


The reaction enthalpies of aldol, Mannich and α-aminoxylation reactions were calculated by density functional theory (DFT) using long-range-corrected (LC), hybrid B3LYP and other up-to-date functionals to show why conventional DFT including B3LYP has given poor enthalpies for these reactions. As a result, we found that long-range exchange interactions significantly affect the reaction enthalpies. We therefore proposed that the poor enthalpies of B3LYP are due to its insufficient long-range exchange effect. On the other hand, LC functionals accurately reproduce reaction enthalpies for these reactions. However, we noticed that even LC functionals present poor reaction enthalpies for specific reactions, in which many branches are produced or very small molecules such as methane molecule participate.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Dalko PI, Moisan L (2001) Angew Chem Int Ed 40:3726–3748

    Article  CAS  Google Scholar 

  2. 2.

    Dalko PI, Moisan L (2004) Angew Chem Int Ed 43:5138–5175

    Article  CAS  Google Scholar 

  3. 3.

    Pellisier H (2007) Tetrahedron 63:9267–9331

    Article  Google Scholar 

  4. 4.

    Melchiorre P, Marigo M, Carlone A, Bartoli G (2008) Angew Chem Int Ed 47:6138–6171

    Article  CAS  Google Scholar 

  5. 5.

    MacMillan DWC (2008) Nature 455:304–308

    Article  CAS  Google Scholar 

  6. 6.

    List B, Lerner RA, Barbas CF III (2000) J Am Chem Soc 122:2395–2396

    Article  CAS  Google Scholar 

  7. 7.

    List B (2000) J Am Chem Soc 122:9336–9337

    Article  CAS  Google Scholar 

  8. 8.

    Cordova A, Sunden H, Bogevig A, Johansson M, Himo F (2004) Chem Eur J 10:3673–3684

    Article  CAS  Google Scholar 

  9. 9.

    List B (2002) Tetrahedron 58:5573–5590

    Article  CAS  Google Scholar 

  10. 10.

    Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  11. 11.

    Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789

    Article  Google Scholar 

  12. 12.

    Bahmanyar S, Houk KN (2001) J Am Chem Soc 123:11273–11283

    Article  CAS  Google Scholar 

  13. 13.

    Bahmanyar S, Houk KN (2001) J Am Chem Soc 123:12911–12912

    Article  CAS  Google Scholar 

  14. 14.

    Rankin KR, Gauld JW, Boyd RJ (2002) J Phys Chem A 106:5155–5159

    Article  CAS  Google Scholar 

  15. 15.

    Bahmanyar S, Houk KN, Martin HJ, List B (2003) J Am Chem Soc 125:2475–2479

    Article  CAS  Google Scholar 

  16. 16.

    Clemente FR, Houk KN (2004) Angew Chem Int Ed 43:5766–5768

    Article  CAS  Google Scholar 

  17. 17.

    Cheong PHY, Zhang H, Thayumanavan R, Tanaka F, Houk KN, Barbas CF III (2006) Org Lett 8:811–814

    Article  CAS  Google Scholar 

  18. 18.

    Hayashi Y, Okano T, Itoh T, Urushima T, Ishikawa H, Uchimaru T (2008) Angew Chem Int Ed 47:9053–9058

    Article  CAS  Google Scholar 

  19. 19.

    Parasuk W, Parasuk V (2008) J Org Chem 73:9388–9392

    Article  CAS  Google Scholar 

  20. 20.

    Li H, Fu A, Shi H (2009) J Mol Catal A: Chem 303:1–8

    Google Scholar 

  21. 21.

    Poe SL, Bogdan AR, Mason BP, Steinbacher JL, Opalka SM, McQuade DT (2009) J Org Chem 74:1574–1580

    Article  CAS  Google Scholar 

  22. 22.

    Diez-Martinez A, Tejero T, Merino P (2010) Tetrahedron: Asymmetry 21:2934–2943

    Google Scholar 

  23. 23.

    Tang Z, Jiang F, Yu L-T, Cui X, Gong L-Z, Mi A-Q, Jiang Y-Z, Wu Y-D (2003) J Am Chem Soc 125:5262–5263

    Article  CAS  Google Scholar 

  24. 24.

    Cheong PHY, Houk KN (2005) Synthesis 9:1533–1537

    Google Scholar 

  25. 25.

    Mitsumori S, Zhang H, Cheong PHY, Houk KN, Tanaka F, Barbas CF III (2006) J Am Chem Soc 128:1040–1041

    Article  CAS  Google Scholar 

  26. 26.

    Shinisha CB, Sunoj RB (2007) Org Biomol Chem 5:1287–1294

    Article  CAS  Google Scholar 

  27. 27.

    Houk KN, Cheong PH-Y (2008) Nature 455:309–313

    Article  CAS  Google Scholar 

  28. 28.

    Wheeler SE, Moran A, Pieniazek SN, Houk KN (2009) J Phys Chem A 38:10376–10384

    Article  Google Scholar 

  29. 29.

    Check CE, Gilbert TM (2005) J Org Chem 70:9828–9834

    Article  CAS  Google Scholar 

  30. 30.

    Leininger T, Stoll H, Werner H-J, Savin A (1997) Chem Phys Lett 275:151–160

    Article  CAS  Google Scholar 

  31. 31.

    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 125:3540–3544

    Article  Google Scholar 

  32. 32.

    Kamiya M, Tsuneda T, Hirao K (2002) J Chem Phys 117:6010–6015

    Article  CAS  Google Scholar 

  33. 33.

    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  34. 34.

    Song JW, Hirosawa T, Tsuneda T, Hirao K (2007) J Chem Phys 126:154105-7

    Article  Google Scholar 

  35. 35.

    Song JW, Tokura S, Sato T, Watson MA, Hirao K (2007) J Chem Phys 127:154109-6

    Google Scholar 

  36. 36.

    Cohen AJ, Mori-Sánchez P, Yang W (2007) J Chem Phys 126:191109-5

    Google Scholar 

  37. 37.

    Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) J Chem Phys 125:074106-9

    Google Scholar 

  38. 38.

    Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109-9

    Google Scholar 

  39. 39.

    Chai JD, Head-Gordon M (2008) J Chem Phys 128:084106-15

    Article  Google Scholar 

  40. 40.

    Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620

    Article  CAS  Google Scholar 

  41. 41.

    Sato T, Tsuneda T, Hirao K (2005) J Chem Phys 123:104307-10

    Google Scholar 

  42. 42.

    Sato T, Tsuneda T, Hirao K (2007) J Chem Phys 126:234114-11

    Google Scholar 

  43. 43.

    Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) J Chem Phys 122:234111-10

    Article  Google Scholar 

  44. 44.

    Sekino H, Maeda Y, Kamiya M, Hirao K (2007) J Chem Phys 126:014107-6

    Article  Google Scholar 

  45. 45.

    Kishi R, Bonness S, Yoneda K, Takahashi H, Nakano M, Botek E, Champagne B, Kubo T, Kamada K, Ohta K, Tsuneda T (2010) J Chem Phys 132:094107-9

    Article  Google Scholar 

  46. 46.

    Song JW, Watson MA, Sekino H, Hirao K (2008) J Chem Phys 129:024117-8

    Google Scholar 

  47. 47.

    Tsuneda T, Song JW, Suzuki S, Hirao K (2010) J Chem Phys 133:174101-9

    Article  Google Scholar 

  48. 48.

    Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822–2827

    Article  CAS  Google Scholar 

  49. 49.

    Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (2000) J Chem Phys 112:6532–6542

    Article  CAS  Google Scholar 

  50. 50.

    Boese AD, Martin JML (2004) J Chem Phys 121:3405–3416

    Article  CAS  Google Scholar 

  51. 51.

    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  52. 52.

    Dunning JTH (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  53. 53.

    Kendall RA, Dunning JTH, Harrison RJ (1992) J Chem Phys 96:6796–6806

    Article  CAS  Google Scholar 

  54. 54.

    Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven,T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomas J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts, R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Wallingford

  55. 55.

    Wodrich MD, Corminboeuf C, Schleyer PVR (2006) Org Lett 8:3631–3634

    Article  CAS  Google Scholar 

  56. 56.

    Wodrich MD, Wannere CS, Mo Y, Jarowski PD, Houk KN, Schleyer PVR (2007) Chem Eur J 13:7731–7744

    Article  CAS  Google Scholar 

  57. 57.

    Tsuneda T, Kamiya M, Hirao K (2003) J Comput Chem 24:1592–1598

    Article  CAS  Google Scholar 

Download references


This research was supported in part by the Core Research for Evolutional Science and Technology Program, and ‘High Performance Computing for Multi-Scale and MultiPhysics Phenomena’ of the Japan Science and Technology Agency (JST). We thank the RIKEN Integrated Cluster of Clusters (RICC) at RIKEN for the computer resources used for the calculation.

Author information



Corresponding author

Correspondence to Takao Tsuneda.

Additional information

Dedicated to Professor Shigeru Nagase on the occasion of his 65th birthday and published as part of the Nagase Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Reaction enthalpies (ΔH0K) at aug-cc-pVTZ, cc-pVTZ and cc-pVDZ basis sets (DOCX 48 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singh, R.K., Tsuneda, T. & Hirao, K. An examination of density functionals on aldol, Mannich and α-aminoxylation reaction enthalpy calculations. Theor Chem Acc 130, 153–160 (2011).

Download citation


  • Density functional theory (DFT)
  • Long-range correction (LC) scheme
  • Condensation reaction enthalpies