Theoretical Chemistry Accounts

, Volume 130, Issue 2–3, pp 153–160 | Cite as

An examination of density functionals on aldol, Mannich and α-aminoxylation reaction enthalpy calculations

  • Raman K. Singh
  • Takao Tsuneda
  • Kimihiko Hirao
Regular Article


The reaction enthalpies of aldol, Mannich and α-aminoxylation reactions were calculated by density functional theory (DFT) using long-range-corrected (LC), hybrid B3LYP and other up-to-date functionals to show why conventional DFT including B3LYP has given poor enthalpies for these reactions. As a result, we found that long-range exchange interactions significantly affect the reaction enthalpies. We therefore proposed that the poor enthalpies of B3LYP are due to its insufficient long-range exchange effect. On the other hand, LC functionals accurately reproduce reaction enthalpies for these reactions. However, we noticed that even LC functionals present poor reaction enthalpies for specific reactions, in which many branches are produced or very small molecules such as methane molecule participate.


Density functional theory (DFT) Long-range correction (LC) scheme Condensation reaction enthalpies 



This research was supported in part by the Core Research for Evolutional Science and Technology Program, and ‘High Performance Computing for Multi-Scale and MultiPhysics Phenomena’ of the Japan Science and Technology Agency (JST). We thank the RIKEN Integrated Cluster of Clusters (RICC) at RIKEN for the computer resources used for the calculation.

Supplementary material

214_2011_944_MOESM1_ESM.docx (49 kb)
Reaction enthalpies (ΔH0K) at aug-cc-pVTZ, cc-pVTZ and cc-pVDZ basis sets (DOCX 48 kb)


  1. 1.
    Dalko PI, Moisan L (2001) Angew Chem Int Ed 40:3726–3748CrossRefGoogle Scholar
  2. 2.
    Dalko PI, Moisan L (2004) Angew Chem Int Ed 43:5138–5175CrossRefGoogle Scholar
  3. 3.
    Pellisier H (2007) Tetrahedron 63:9267–9331CrossRefGoogle Scholar
  4. 4.
    Melchiorre P, Marigo M, Carlone A, Bartoli G (2008) Angew Chem Int Ed 47:6138–6171CrossRefGoogle Scholar
  5. 5.
    MacMillan DWC (2008) Nature 455:304–308CrossRefGoogle Scholar
  6. 6.
    List B, Lerner RA, Barbas CF III (2000) J Am Chem Soc 122:2395–2396CrossRefGoogle Scholar
  7. 7.
    List B (2000) J Am Chem Soc 122:9336–9337CrossRefGoogle Scholar
  8. 8.
    Cordova A, Sunden H, Bogevig A, Johansson M, Himo F (2004) Chem Eur J 10:3673–3684CrossRefGoogle Scholar
  9. 9.
    List B (2002) Tetrahedron 58:5573–5590CrossRefGoogle Scholar
  10. 10.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  11. 11.
    Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789CrossRefGoogle Scholar
  12. 12.
    Bahmanyar S, Houk KN (2001) J Am Chem Soc 123:11273–11283CrossRefGoogle Scholar
  13. 13.
    Bahmanyar S, Houk KN (2001) J Am Chem Soc 123:12911–12912CrossRefGoogle Scholar
  14. 14.
    Rankin KR, Gauld JW, Boyd RJ (2002) J Phys Chem A 106:5155–5159CrossRefGoogle Scholar
  15. 15.
    Bahmanyar S, Houk KN, Martin HJ, List B (2003) J Am Chem Soc 125:2475–2479CrossRefGoogle Scholar
  16. 16.
    Clemente FR, Houk KN (2004) Angew Chem Int Ed 43:5766–5768CrossRefGoogle Scholar
  17. 17.
    Cheong PHY, Zhang H, Thayumanavan R, Tanaka F, Houk KN, Barbas CF III (2006) Org Lett 8:811–814CrossRefGoogle Scholar
  18. 18.
    Hayashi Y, Okano T, Itoh T, Urushima T, Ishikawa H, Uchimaru T (2008) Angew Chem Int Ed 47:9053–9058CrossRefGoogle Scholar
  19. 19.
    Parasuk W, Parasuk V (2008) J Org Chem 73:9388–9392CrossRefGoogle Scholar
  20. 20.
    Li H, Fu A, Shi H (2009) J Mol Catal A: Chem 303:1–8Google Scholar
  21. 21.
    Poe SL, Bogdan AR, Mason BP, Steinbacher JL, Opalka SM, McQuade DT (2009) J Org Chem 74:1574–1580CrossRefGoogle Scholar
  22. 22.
    Diez-Martinez A, Tejero T, Merino P (2010) Tetrahedron: Asymmetry 21:2934–2943Google Scholar
  23. 23.
    Tang Z, Jiang F, Yu L-T, Cui X, Gong L-Z, Mi A-Q, Jiang Y-Z, Wu Y-D (2003) J Am Chem Soc 125:5262–5263CrossRefGoogle Scholar
  24. 24.
    Cheong PHY, Houk KN (2005) Synthesis 9:1533–1537Google Scholar
  25. 25.
    Mitsumori S, Zhang H, Cheong PHY, Houk KN, Tanaka F, Barbas CF III (2006) J Am Chem Soc 128:1040–1041CrossRefGoogle Scholar
  26. 26.
    Shinisha CB, Sunoj RB (2007) Org Biomol Chem 5:1287–1294CrossRefGoogle Scholar
  27. 27.
    Houk KN, Cheong PH-Y (2008) Nature 455:309–313CrossRefGoogle Scholar
  28. 28.
    Wheeler SE, Moran A, Pieniazek SN, Houk KN (2009) J Phys Chem A 38:10376–10384CrossRefGoogle Scholar
  29. 29.
    Check CE, Gilbert TM (2005) J Org Chem 70:9828–9834CrossRefGoogle Scholar
  30. 30.
    Leininger T, Stoll H, Werner H-J, Savin A (1997) Chem Phys Lett 275:151–160CrossRefGoogle Scholar
  31. 31.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 125:3540–3544CrossRefGoogle Scholar
  32. 32.
    Kamiya M, Tsuneda T, Hirao K (2002) J Chem Phys 117:6010–6015CrossRefGoogle Scholar
  33. 33.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57CrossRefGoogle Scholar
  34. 34.
    Song JW, Hirosawa T, Tsuneda T, Hirao K (2007) J Chem Phys 126:154105-7CrossRefGoogle Scholar
  35. 35.
    Song JW, Tokura S, Sato T, Watson MA, Hirao K (2007) J Chem Phys 127:154109-6Google Scholar
  36. 36.
    Cohen AJ, Mori-Sánchez P, Yang W (2007) J Chem Phys 126:191109-5Google Scholar
  37. 37.
    Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) J Chem Phys 125:074106-9Google Scholar
  38. 38.
    Vydrov OA, Scuseria GE (2006) J Chem Phys 125:234109-9Google Scholar
  39. 39.
    Chai JD, Head-Gordon M (2008) J Chem Phys 128:084106-15CrossRefGoogle Scholar
  40. 40.
    Chai JD, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615–6620CrossRefGoogle Scholar
  41. 41.
    Sato T, Tsuneda T, Hirao K (2005) J Chem Phys 123:104307-10Google Scholar
  42. 42.
    Sato T, Tsuneda T, Hirao K (2007) J Chem Phys 126:234114-11Google Scholar
  43. 43.
    Kamiya M, Sekino H, Tsuneda T, Hirao K (2005) J Chem Phys 122:234111-10CrossRefGoogle Scholar
  44. 44.
    Sekino H, Maeda Y, Kamiya M, Hirao K (2007) J Chem Phys 126:014107-6CrossRefGoogle Scholar
  45. 45.
    Kishi R, Bonness S, Yoneda K, Takahashi H, Nakano M, Botek E, Champagne B, Kubo T, Kamada K, Ohta K, Tsuneda T (2010) J Chem Phys 132:094107-9CrossRefGoogle Scholar
  46. 46.
    Song JW, Watson MA, Sekino H, Hirao K (2008) J Chem Phys 129:024117-8Google Scholar
  47. 47.
    Tsuneda T, Song JW, Suzuki S, Hirao K (2010) J Chem Phys 133:174101-9CrossRefGoogle Scholar
  48. 48.
    Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822–2827CrossRefGoogle Scholar
  49. 49.
    Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (2000) J Chem Phys 112:6532–6542CrossRefGoogle Scholar
  50. 50.
    Boese AD, Martin JML (2004) J Chem Phys 121:3405–3416CrossRefGoogle Scholar
  51. 51.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241CrossRefGoogle Scholar
  52. 52.
    Dunning JTH (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  53. 53.
    Kendall RA, Dunning JTH, Harrison RJ (1992) J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  54. 54.
    Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven,T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomas J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts, R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, WallingfordGoogle Scholar
  55. 55.
    Wodrich MD, Corminboeuf C, Schleyer PVR (2006) Org Lett 8:3631–3634CrossRefGoogle Scholar
  56. 56.
    Wodrich MD, Wannere CS, Mo Y, Jarowski PD, Houk KN, Schleyer PVR (2007) Chem Eur J 13:7731–7744CrossRefGoogle Scholar
  57. 57.
    Tsuneda T, Kamiya M, Hirao K (2003) J Comput Chem 24:1592–1598CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Raman K. Singh
    • 1
    • 2
  • Takao Tsuneda
    • 1
    • 2
  • Kimihiko Hirao
    • 1
    • 2
  1. 1.Advanced Science Institute, RIKENWako, SaitamaJapan
  2. 2.CREST, Japan Science and Technology Agency (JST)TokyoJapan

Personalised recommendations