Skip to main content
Log in

DFT study of structure–properties correlations in [MnTPP][TCNE] quasi-one-dimensional molecular magnets

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We report the first band structure calculations of the quasi-one-dimensional [MnTPP][TCNE] compounds (TPP = meso-tetraphenylporphyrinato, TCNE = tetracyanoethylene), based on Density Functional Theory (DFT) methods, in order to interpret the magnetic ordering in these prototypic systems. We compare and contrast the results of broken-symmetry DFT calculations for extended systems, with periodic boundary conditions, and for finite systems, magnetic dimers modeling the actual molecular magnets. By varying systematically the main angles, we are able to determine the geometry dependence of the exchange interaction. Structure–properties correlations in these charge-transfer salts reveal the determinant role of the Mn-(N≡C)TCNE bond angle on the strength of the ferrimagnetic coupling between the S 1 = 2 spin located on the MnIII-porphyrin donor and the S 2 = 1/2 spin positioned on the cyanocarbon acceptor. When the Mn-(N≡C)TCNE angle is decreased, the intrachain magnetic coupling strengthens, correlated with the increase in the \( d_{{z^{2} }} - \pi * \) orbital overlap. The exchange coupling constants resulting from DFT calculations of extended systems, with periodic boundary conditions, were found to be consistent with those obtained for the dimers, but systematically smaller. The exchange constants vary strongly with the functional used, hybrid functionals such as B3LYP leading to results that better correlate with the experimental mean-field critical temperatures. The coupling constant varies significantly with the type of broken-symmetry approach, depending on the overlap between magnetic orbitals, but weakly on the basis set once polarization effects are included. The electronic structure calculations for the extended systems provide a density of states consistent with the energy spectrum of the corresponding dimer, allowing for an intuitive explanation of the intrachain ferrimagnetic ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kahn O (1993) Molecular magnetism. VCH Publishers, New York

    Google Scholar 

  2. Miller JS, Drillon M (eds) (2002) Magnetism: molecules to materials. Wiley-VCH, Weinheim

  3. Gîrţu MA, Fahlman M (2009) In: Nalwa HS (ed) Magnetic nanostructures, hybrid organic-inorganic nanostructured magnets. American Scientific Publishers, Stevenson Ranch, pp 359–433

    Google Scholar 

  4. Miller JS, Calabrese JC, McLean RS, Epstein AJ (1992) Adv Mater 4:498

    Article  CAS  Google Scholar 

  5. Sugiura K-I, Arif A, Rittenberg DK, Schweizer J, Ohrstrom L, Epstein AJ, Miller JS (1997) Chem Eur J 3:138

    Article  CAS  Google Scholar 

  6. Brandon EJ, Sugiura K-I, Arif AM, Liable-Sands A, Rheingold AL, Miller JS (1997) Mol Cryst Liq Cryst 305:269

    Article  CAS  Google Scholar 

  7. Sugiura K-I, Mikami S, Tanaka T, Sawada M, Manson JL, Miller JS, Sakata Y (1997) Chem Lett 1071

  8. Brandon EJ, Arif AM, Miller JS, Sugiura K-I, Burkhart BM (1998) Crystal Eng 1:97

    Article  CAS  Google Scholar 

  9. Brandon EJ, Burkhart BM, Rogers RD, Miller JS (1998) Chem Eur J 4:1938

    Article  CAS  Google Scholar 

  10. Brandon EJ, Arif AM, Burkhart BM, Miller JS (1998) Inorg Chem 37:2792

    Article  CAS  Google Scholar 

  11. Brandon EJ, Rittenberg DK, Arif AM, Miller JS (1998) Inorg Chem 37:3376

    Article  CAS  Google Scholar 

  12. Rittenberg DK, Sugiura K-i, Sakata Y, Guzei IA, Rheingold AL, Miller JS (1999) Chem Eur J 5:1874

    Article  CAS  Google Scholar 

  13. Rittenberg DK, Sugiura K-I, Sakata Y, Mikami S, Epstein AJ, Miller JS (2000) Adv Mater 12:126

    Article  CAS  Google Scholar 

  14. Hibbs W, Rittenberg DK, Sugiura K-I, Burkhart BM, Morin BG, Arif AM, Liable-Sands L, Rheingold AL, Sundaralingam M, Epstein AJ, Miller JS (2001) Inorg Chem 40:1915

    Article  CAS  Google Scholar 

  15. Epstein AJ, Wynn CM, Gîrţu MA, Brinckerhoff WB, Sugiura K-i, Miller JS (1997) Molec Cryst Liq Cryst 305:321

    Article  CAS  Google Scholar 

  16. Wynn CM, Gîrţu MA, Brinckerhoff WB, Sugiura K-I, Miller JS, Epstein AJ (1997) Chem Mater 9:2156

    Article  CAS  Google Scholar 

  17. Wynn CM, Gîrţu MA, Sugiura K-i, Brandon EJ, Manson JL, Miller JS, Epstein AJ (1997) Synth Met 85:1695

    Article  CAS  Google Scholar 

  18. Wynn CM, Gîrţu MA, Miller JS, Epstein AJ (1997) Phys Rev B 56:315

    Article  CAS  Google Scholar 

  19. Wynn CM, Gîrţu MA, Miller JS, Epstein AJ (1997) Phys Rev B 56:14050

    Article  Google Scholar 

  20. Gîrţu MA, Wynn CM, Sugiura K-I, Miller JS, Epstein AJ (1997) J Appl Phys 81:4410

    Article  Google Scholar 

  21. Gîrţu MA, Wynn CM, Sugiura K-I, Miller JS, Epstein AJ (1997) Synth Metals 85:1703

    Article  Google Scholar 

  22. Lescouezec R, Toma LM, Vaissermann J, Verdaguer M, Delgado FS, Ruiz-Perez C, Lloret F, Julve M (2005) Coord Chem Rev 249:2691

    Article  CAS  Google Scholar 

  23. Seiden J (1983) J Phys (Paris) Lett 44:L-947

    Google Scholar 

  24. Brandon EJ, Kollmar C, Miller JS (1998) J Am Chem Soc 120:1822

    Article  CAS  Google Scholar 

  25. Ribas-Arino J, Novoa JJ, Miller JS (2006) J Mater Chem 16:2600

    Article  CAS  Google Scholar 

  26. Koizumi K, Shoji M, Kitagawa Y, Taniguchi T, Kawakami T, Okumura M, Yamaguchi K (2005) Polyhedron 24:2720

    Article  CAS  Google Scholar 

  27. Cimpoesu F, Ferbinteanu M, Frecuş B, Gîrţu MA (2009) Polyhedron 28:2039

    Article  CAS  Google Scholar 

  28. Hohenberg P, Kohn W (1964) Phys Rev 136:B864

    Article  Google Scholar 

  29. Kohn W, Sham LJ (1965) Phys Rev A 140:1133

    Article  Google Scholar 

  30. Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  31. Noodleman L, Norman JG (1979) J. Chem Phys 70:4903

    Article  CAS  Google Scholar 

  32. Noodleman L (1981) J Chem Phys 74:5737

    Article  CAS  Google Scholar 

  33. Bencini A, Totti F (2005) Int J Quant Chem 101:819

    Article  CAS  Google Scholar 

  34. Daul CA, Ciofini I, Bencini A (2002) In: Sen KD (ed) Reviews of modern quantum chemistry, part II. World Scientific, Singapore, p 1247

    Google Scholar 

  35. Noodleman L, Peng CY, Case DA, Mouesca JM (1995) Coord Chem Rev 144:199

    Article  CAS  Google Scholar 

  36. Nagao H, Nishino M, Shigeta Y, Soda T, Kitagawa Y, Onishi T, Yoshioka Y, Yamaguchi K (2000) Coord Chem Rev 198:265

    Article  CAS  Google Scholar 

  37. Ruiz E (2004) Struct Bonding 113:71

    CAS  Google Scholar 

  38. Noodleman L, Davidson ER (1986) Chem Phys 109:131

    Article  Google Scholar 

  39. Ruiz E, Alemany P, Alvarez S, Cano J (1997) J Am Chem Soc 119:1297

    Article  CAS  Google Scholar 

  40. Ruiz E, Cano J, Alvarez S, Alemany P (1999) J Comput Chem 20:1391

    Article  CAS  Google Scholar 

  41. Mitani M, Mori TakanoY, Yamaki D, Yoshioka Y, Yamaguchi K (2000) Chem Phys 113:4035

    CAS  Google Scholar 

  42. Onishi T, Takano Y, Kitagawa Y, Kawakami T, Yoshioka Y, Yamaguchi K (2001) Polyhedron 20:1177

    Article  CAS  Google Scholar 

  43. Dai D, Whangbo M-H (2003) J Chem Phys 118:29

    Article  CAS  Google Scholar 

  44. Shoji M, Koizumi K, Kitagawa Y, Kawakami T, Yamanaka S, Okumura M, Yamaguchi K (2006) ). Chem Phys Lett 432:343

    Article  CAS  Google Scholar 

  45. Gorelik EV, Ovcharenko VI, Baumgarten M (2008) Eur J Inorg Chem 2837

  46. Nakanashi Y, Kitagawa Y, Saito T, Kataoka Y, Matsui T, Kawakami K, Okumura M, Yamaguchi K (2009) Int J Quantum Chem 109:3632

    Article  Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Inc., Wallingford

  48. Becke AD (1998) Phys Rev A 38:3098

    Article  Google Scholar 

  49. Perdew JP (1986) Phys Rev B 33:8822

    Article  Google Scholar 

  50. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comp Chem 22:976

    Article  CAS  Google Scholar 

  51. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  52. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  53. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  54. Bencini A, Totti F (2009) J Chem Theory Comput 5:144

    Article  CAS  Google Scholar 

  55. Cabrero J, Calzado CJ, Maynau D, Caballol R, Malrieu JP (2002) J Phys Chem A 106:8146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Romanian Ministry of Education and Research through the CNCSIS-UEFISCSU research grant PN2-Idei-PCCE-239/2010, contract no. 9/2010.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanica Cimpoesu or Mihai A. Gîrţu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oprea, C.I., Cimpoesu, F., Panait, P. et al. DFT study of structure–properties correlations in [MnTPP][TCNE] quasi-one-dimensional molecular magnets. Theor Chem Acc 129, 847–857 (2011). https://doi.org/10.1007/s00214-011-0943-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0943-7

Keywords

Navigation