Skip to main content
Log in

Theoretical study on photophysical properties of 2,1,3-benzothiadiazole-based star-shaped molecules

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Star-shaped molecules with tailoring functional groups in the core and the arms have great potential application in organic light-emitting devices, because it can be designed to realize low band gap, broad absorption, and excellent solubility for low-cost solution process. To gain an insight into the structure–property relationships, a set of four-arm star-shaped molecules with 2,1,3-benzothiadiazole as the core, different π-conjugated groups as the arm, and triphenylamine or 2-(pyridin-2-yl) pyridine as the end-group were designed. In this study, a systematic investigation into them was carried out using the density functional theory and time-dependent density functional theory methods. The calculated ionization potentials, electron affinities, and reorganization energies (λ) show that the properties of the π-conjugated bridge and the end-group significantly affect the carrier injection and transport characteristics of these molecules, especially for S-BTDP and S-EBTD. Among these molecules, S-BTDP exhibits better electron injection ability due to the introduction of 2-(pyridin-2-yl) pyridine as the end-group. However, S-EBTD, with ethylene as π-conjugated bridge, has excellent hole injection and carrier transport behaviors. We also calculated the singlet-to-triplet exciton-formation cross-section ratio (σST), the exciton-formation fractions (χS), and the absorption and emission spectra of these molecules. We calculated that σST ranges from 1.78 to 2.76 and that χS is ca. 0.37–0.48. These molecules have two absorption bands in the range of 340–410 nm and 500–613 nm, respectively. The calculated emission spectra range from 619 to 706 nm. It can be deduced that the studied 2,1,3-benzothiadiazole-based star-shaped molecules can serve as efficient red light-emitting electroluminescent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang Y, Zhou Y, He QG, He C, Yang CH, Bai FL, Li YF (2009) J Phys Chem B 113:7745

    Article  CAS  Google Scholar 

  2. Shirota Y, Kageyama H (2007) Chem Rev 107:953

    Article  CAS  Google Scholar 

  3. Tang RP, Tan ZA, Li YF, Xi F (2006) Chem Mater 18:1053

    Article  CAS  Google Scholar 

  4. Chen CT (2004) Chem Mater 16:4389

    Article  CAS  Google Scholar 

  5. Ren XF, Ren AM, Feng JK, Zhou X (2010) Org Electron 11:979

    Article  CAS  Google Scholar 

  6. Wu WC, Yeh HC, Chan LH, Chen CT (2002) Adv Mater 14:1072

    Article  CAS  Google Scholar 

  7. Thomas KRJ, Lin JT, Tao YT, Chuen CH (2002) Adv Mater 14:822

    Article  CAS  Google Scholar 

  8. Liu J, Shao SY, Chen L, Xie ZY, Cheng YX, Geng YH, Wang LX, Jing XB, Wang FS (2007) Adv Mater 19:1859

    Article  CAS  Google Scholar 

  9. Luo J, Li XZ, Hou Q, Peng JB, Yang W, Cao Y (2007) Adv Mater 19:1113

    Article  CAS  Google Scholar 

  10. Ma XM, Hua JL, Wu WJ, Jin YH, Meng FS, Zhan WH, Tian H (2008) Tetrahedron 64:345

    Article  CAS  Google Scholar 

  11. Du JP, Xu EJ, Zhong HL, Yu F, Liu C, Wu HR, Zeng DL, Ren SJ, Sun J, Liu YC, Cao AM, Fang Q (2008) J Polym Sci Polym Chem Ed 46:1376

    Article  CAS  Google Scholar 

  12. Li WW, Du C, Li FH, Zhou Y, Fahlman M, Bo ZS, Zhang FL (2009) Chem Mater 21:5327

    Article  CAS  Google Scholar 

  13. He C, He QG, Yi YP, Wu GL, Bai FL, Shuai ZG, Li YF (2008) J Mater Chem 18:4085

    Article  CAS  Google Scholar 

  14. Ma CQ, Fonrodona M, Schikora MC, Wienk MM, Janssen RAJ, Bäuerle P (2008) Adv Funct Mater 18:3323

    Article  CAS  Google Scholar 

  15. Fischer MKR, Ma CQ, Janssen RAJ, Debaerdemaeker T, Bäuerle P (2009) J Mater Chem 19:4784

    Article  CAS  Google Scholar 

  16. Kopidakis N, Mitchell WJ, Lagemaat JVD, Ginley DS, Rumbles G, Shaheen SE, Rance WL (2006) Appl Phys Lett 89:103524

    Article  Google Scholar 

  17. Lee TW, Kim DC, Kang NS, Yu JW, Cho MJ, Kim KH, Choi DH (2008) Chem Lett 37:866

    Article  CAS  Google Scholar 

  18. Kim YG, Christian PH, Ananthakrishnan N, Niazimbetova ZI, Thompson BC, Galvin ME, Reynolds JR (2008) Sol Energy Mater Sol Cells 92:307

    Article  CAS  Google Scholar 

  19. Alévêque O, Leriche P, Cocherel N, Frère P, Cravino A, Roncali J (2008) Sol Energy Mater Sol Cells 92:1170

    Article  Google Scholar 

  20. Cravino A, Roquet S, Alévêque O, Leriche P, Frère P, Roncali J (2006) Chem Mater 18:2584

    Article  CAS  Google Scholar 

  21. Roncali J, Frère P, Blanchard P, Bettignies RD, Turbiez M, Roquet S, Leriche P, Nicolas Y (2006) Thin Solid Films 511–512:567

    Article  Google Scholar 

  22. Zhang XW, Li J, Khan MA, Zhang L, Jiang XY, Khizar-ul H, Zhu WQ, Zhang ZL (2009) Semicond Sci Technol 24:075021

    Article  Google Scholar 

  23. Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111:10439

    Article  CAS  Google Scholar 

  24. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908

    Article  CAS  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian Inc, Wallingford

    Google Scholar 

  26. Chu TY, Ho MH, Chen JF, Chen CH (2005) Chem Phys Lett 415:137

    Article  CAS  Google Scholar 

  27. Epstein AJ, Lee WP, Prigodin VN (2001) Synth Met 117:9

    Article  CAS  Google Scholar 

  28. Reedijk JA, Marten HCF, van Bohemena SMC, Hilt O, Brom HB, Michelsb MAJ (1999) J Synth Met 101:475

    Article  CAS  Google Scholar 

  29. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  30. Hutchison GR, Ratner MA, Marks TJ (2005) J Am Chem Soc 127:2339

    Article  CAS  Google Scholar 

  31. Marcus RA (1993) Rev Mod Phys 65:599

    Article  CAS  Google Scholar 

  32. Marcus RA, Eyring H (1964) Annu Rev Phys Chem 15:155

    Article  CAS  Google Scholar 

  33. Hush NS (1958) J Chem Phys 28:962

    Article  CAS  Google Scholar 

  34. Marcus RA (1956) J Chem Phys 24:966

    Article  CAS  Google Scholar 

  35. Chernyak V, Meier T, Tsiper E, Mukamel S (1999) J Phys Chem A 103:10294

    Article  CAS  Google Scholar 

  36. Barzilai IL, Bulatov V, Schechter I (2004) Anal Chim Acta 501:151

    Article  Google Scholar 

  37. Lukeš V, Aquino A, Lischka H (2005) J Phys Chem A 109:10232

    Article  Google Scholar 

  38. Zou LY, Ren AM, Feng JK, Ran XQ (2009) J Phys Org Chem 22:1104

    Article  CAS  Google Scholar 

  39. Wohlgenannt M, Kunj T, Mazumdar S, Ramasesha S, Vardeny ZV (2001) Nature 409:494

    Article  CAS  Google Scholar 

  40. Karabunarliev S, Bittner ER (2003) Phys Rev Lett 90:057402

    Article  Google Scholar 

  41. Wohlgenannt M, Jiang XM, Vardeny ZV, Janssen RAJ (2002) Phys Rev Lett 88:197401

    Article  CAS  Google Scholar 

  42. Baldo MA, O’Brien DF, Thompson ME, Forrest S (1999) Phys Rev B 60:14422

    Article  CAS  Google Scholar 

  43. Ho PKH, Kim JS, Burroughes JH, Becker H, Li SFY, Brown TM, Cacialli F, Friend RH (2000) Nature 404:481

    Article  CAS  Google Scholar 

  44. Cao Y, Parker ID, Yu G, Zhang C, Heeger AJ (1999) Nature 397:414

    Article  CAS  Google Scholar 

  45. Wilson JS, Dhoot AS, Seeley AJAB, Khan MS, Köhler A, Friend RH (2001) Nature 413:828

    Article  CAS  Google Scholar 

  46. Shuai Z, Beljonne D, Silbey RJ, Brédas JL (2000) Phys Rev Lett 84:131

    Article  CAS  Google Scholar 

  47. Chen LP, Zhu LY, Shuai ZG (2006) J Phys Chem A 110:13349

    Article  CAS  Google Scholar 

  48. Yin SW, Chen LP, Xuan PF, Chen KQ, Shuai Z (2004) J Phys Chem B 108:9608

    Article  CAS  Google Scholar 

  49. Yin J, Chen RF, Zhang SL, Ling QD, Huang W (2010) J Phys Chem A 114:3655

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Major State Basic Research Development Program (2002CB 613406), the National Natural Science Foundation of China (Project No. 20973078), the State Key Laboratory of Theoretical and Computational Chemistry of Jilin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Min Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, YF., Ren, XF., Zou, LY. et al. Theoretical study on photophysical properties of 2,1,3-benzothiadiazole-based star-shaped molecules. Theor Chem Acc 129, 833–845 (2011). https://doi.org/10.1007/s00214-011-0942-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0942-8

Keywords

Navigation