Skip to main content
Log in

Theoretical study on the reaction of hydrogen atoms with aniline

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reaction of aniline with hydrogen atom is investigated herein using the hybrid meta-DFT functional of BB1 K. Hydrogen atom is found to preferentially add at an ortho position. However, the fate of the o-(C6H5NH2)H adduct is found to be solely the deactivation of the initial addition channel. The rate constant for the abstraction channel (C6H5NH2 + H → C6H5NH + H2) is fitted by the expression 1.10 × 10−11 exp(−4,200/T) cm3 molecule−1 s−1. Our calculated rate constant for the abstraction channel agrees very well with the available experimental measurements. Satisfactory agreement is found between calculated and experimental measurements for the displacement channel (C6H5NH2 + H → C6H6 + NH2). Our detailed analysis for the corresponding displacements in toluene and phenol suggests that the three systems exhibit similar behavior with regard to the relative importance of abstraction and displacement channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Aniline Fact Sheet (CAS No. 62-53-3) (1994) Pollution prevention and toxics. Washington, DC

  2. Jones CR, Liu Y-Y, Sepai O, Yan H, Sabbioni G (2005) Environ SciTechnol 40:387

    Article  Google Scholar 

  3. Calaf RE, Pena J, Paytubi S, Blount BC, Posada de la Paz M, Gelpi E, Abian J (2001) Anal Chem 73:3828

    Article  CAS  Google Scholar 

  4. Ferge T, Maguhn J, Hafner K, Muhlberger F, Davidovic M, Warnecke R, Zimmermann R (2005) Environ Sci Technol 39:1393

    Article  CAS  Google Scholar 

  5. Atkinson R, Tuazon EC, Wallington TJ, Aschmann SM, Arey J, Winer AM, Pitts JN (1987) Environ Sci Technol 21:64

    Article  CAS  Google Scholar 

  6. Patil SS, Shinde VM (1988) Environ Sci Technol 22:1160

    Article  CAS  Google Scholar 

  7. Yang K, Wu W, Jing Q, Zhu L (2008) Environ Sci Technol 42:7931

    Article  CAS  Google Scholar 

  8. He YZ, Cui JP, Mallard WG, Tsang WJ (1988) J Phys Chem 92:1510

    Article  CAS  Google Scholar 

  9. Frisch MJT, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels RE, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone VCM, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski JO, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez CM, Head-Gordon M, Replogle ES, Pople JA (2001) Gaussian 03; revision A. 11th edn. Gaussian, Inc, Pittsburgh

  10. Zhao Y, Lynch BJ, Truhlar DGJ (2004) Phys Chem A 108:2715

    Article  CAS  Google Scholar 

  11. Montgomery JA, Ochterski JW, Petersson GA (1994) J Chem Phys 101:5900

    Article  CAS  Google Scholar 

  12. Kohn W, Sham LJ (1965) Phys Rev A 140:1133

    Article  Google Scholar 

  13. Zhao Y, Gonzalez-Garcia N, Truhlar DG (2005) J Phys Chem A 109:2012

    Article  CAS  Google Scholar 

  14. McClurg RB, Flagan RC, Goddard WA (1997) J Chem Phys 106:6675

    Article  CAS  Google Scholar 

  15. Mokrushin V, Bedanov V, Tsang W, Zachariah M, Knyazev V (2002) ChemRate; version 1, 19th edn. NIST, Gaithersburg

    Google Scholar 

  16. Eyring HJ (1935) Chem Phys 3:107

    CAS  Google Scholar 

  17. Eckart C (1930) Phys Rev 35:1303

    Article  CAS  Google Scholar 

  18. Duncan WT, Bell RL, Truong TN (1998) J Comput Chem 19:1309

    Article  Google Scholar 

  19. Fukuyo M, Hirotsu K, Higuchi T (1982) Acta Cryst B 38:640

    Article  Google Scholar 

  20. Alcolea Palafox M, Meléndez F (1999) J Mol Struct: THEOCHEM 493:171

    Article  Google Scholar 

  21. Larsen NW, Hansen EL, Nicolaisen FM (1976) Chem Phys Lett 43:584

    Article  CAS  Google Scholar 

  22. Halpern RM, Ramachandran BR, Glendening ED (2007) J Chem Edu 84:1067

    Article  CAS  Google Scholar 

  23. Hussein AP, Lielmezs J, Aleman H (1985) Thermochimica Acta 86:209

    Article  CAS  Google Scholar 

  24. Evans JC (1960) Spectrochim Acta 428

  25. Michael JV, Sutherland JW, Klemm RJ (1986) Phys Chem 90:497

    Article  CAS  Google Scholar 

  26. Good WD, Smith NK (1969) J Chem Eng Data 14:102

    Article  CAS  Google Scholar 

  27. da Silva G, Chen C-C, Bozzelli JW (2006) Chem Phys Lett 424:42

    Article  CAS  Google Scholar 

  28. He YZ, Mallard WG, Tsang W (1988) J Phys Chem 92:2196

    Article  CAS  Google Scholar 

  29. Demissy M, Lesclaux R (1980) J Am Chem Soc 102:2897

    Article  CAS  Google Scholar 

  30. Zhu L, Bozzelli JW (2003) J Phys Chem A 107:3696

    Article  CAS  Google Scholar 

  31. Altarawneh M, Dlugogorski BZ, Kennedy EM, Mackie JC (2010) Combust Flame 157:1325

    Article  CAS  Google Scholar 

  32. Robaugh D, Tsang WJ (1988) J Phys Chem 80:4159

    Google Scholar 

  33. Ellis C, Scott MS, Walker RW (2003) Combust Flame 132:291

    Article  CAS  Google Scholar 

  34. Zhang QZ, Qu XH, Xu F, Shi XY, Wang WX (2009) Environ Sci Technol 43:4105

    Article  CAS  Google Scholar 

  35. Li S, Zhang Q, Wang W (2006) Chem Phys Lett 428:262

    Article  CAS  Google Scholar 

  36. Xu F, Wang H, Zhang QZ, Zhang RX, Qu XH, Wang WX (2010) Environ Sci Technol 44:1399

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study has been supported by a grant of computing time from the Australian Centre of Advanced Computing and Communications (ac3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammednoor Altarawneh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

214_2011_940_MOESM1_ESM.doc

Supporting Information Available: Calculated total energies, zero-point energies, Cartesian coordinates, moments of inertia, and vibrational frequencies of all structures. (DOC 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batiha, M., Altarawneh, M., Alsofi, A. et al. Theoretical study on the reaction of hydrogen atoms with aniline. Theor Chem Acc 129, 823–832 (2011). https://doi.org/10.1007/s00214-011-0940-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0940-x

Keywords

Navigation