Skip to main content
Log in

QM/MM study on catalytic mechanism of aspartate racemase from Pyrococcus horikoshii OT3

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The enzyme aspartate racemase from Pyrococcus horikoshii OT3 catalyzes the interconversion between l- and d-Asp. In this work, we employed the hybrid QM/MM approach with the self-consistent charge-density functional tight binding (SCC-DFTB) model to study the catalytic mechanism for the conversion of l-Asp into d-Asp. The molecular dynamics simulation showed that the substrate l-Asp forms an extensive network of interactions with the active-site residues of the aspartate racemase through its side chain carboxylate, ammonium group, and α-carboxylate. The potential of mean force calculations confirmed that the racemization reaction involves two proton transfers (from the α-carbon to Cys194 and from Cys82 to the α-carbon), which occurs in a concerted way, although highly asynchronous. The calculated free energy of activation is 17.5 kcal/mol, which is consistent with the reaction rate measured from experiment. An electrostatic interaction analysis was performed to estimate the key role played by individual residues in stabilizing the transition state. The docking study on the binding of l-Asp and d-Asp to aspartate racemase indicates that this enzyme employs a “two-base” mechanism not a “one-base” mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Walsh CT (1989) J Biol Chem 264:2393–2396

    CAS  Google Scholar 

  2. Yohda M, Endo I, Abe Y, Ohta T, Iida T, Maruyama T, Kagawa Y (1996) J Biol Chem 271:22017–22021

    Article  CAS  Google Scholar 

  3. Matsumoto M, Homma H, Long Z, Imai K, Iida T, Maruyama T, Aikawa Y, Endo I, Yohda M (1999) J Bacteriol 181:6560–6563

    CAS  Google Scholar 

  4. Dunlop DS, Neidle A, AcHale D, Dunlop DM, Lajtha A (1986) Biochem Biophys Res Commun 141:27–32

    Article  CAS  Google Scholar 

  5. Wolosker H, D’Aniello A, Synder SH (2000) Neuroscience 100:183–189

    Article  CAS  Google Scholar 

  6. Johnston MM, Diven WF (1969) J Biol Chem 244:5414–5420

    CAS  Google Scholar 

  7. Gerlt JA, Kenyon GL, Kozarich JW, Neidhart DJ, Petsko GA, Powers VM (1992) Curr Opin Struct Biol 2:736–742

    Article  CAS  Google Scholar 

  8. Hayashi H, Wada H, Yoshimura T, Esaki N, Soda K (1990) Annu Rev Biochem 59:87–110

    Article  CAS  Google Scholar 

  9. Nakajima N, Tanizawa K, Tanaka H, Soda K (1986) Agric Biol Chem 50:2823–2830

    CAS  Google Scholar 

  10. Albery WJ, Knowles JR (1986) Biochemistry 25:2572–2577

    Article  CAS  Google Scholar 

  11. Higgins W, Tardif C, Richaud C, Krivanek MA, Cardin A (1989) Eur J Biochem 186:137–143

    Article  CAS  Google Scholar 

  12. Finlay TH, Adams EJ (1970) J Biol Chem 245:5248–5260

    CAS  Google Scholar 

  13. Gallo KA, Tanner ME, Knowles JR (1993) Biochemistry 32:3991–3997

    Article  CAS  Google Scholar 

  14. Tanner ME, Gallo KA, Knowles JR (1993) Biochemistry 32:3998–4006

    Article  CAS  Google Scholar 

  15. Koo CW, Blanchard JS (1999) Biochemistry 38:4416–4422

    Article  CAS  Google Scholar 

  16. Fisher LM, Belasco JG, Bruice TW, Albery WJ, Knowles JR (1986) Biochemistry 25:2543–2551

    Article  CAS  Google Scholar 

  17. Yamauchi T, Choi SY, Okada H, Yohda M, Kumagai H, Esaki N, Soda K (1992) J Biol Chem 267:18361–18364

    CAS  Google Scholar 

  18. Liu L, Iwata K, Kita A, Kawarabayasi Y, Yohda M, Miki K (2002) J Mol Biol 319:479–489

    Article  CAS  Google Scholar 

  19. Yoshida T, Seko T, Okada O, Iwata K, Liu L, Miki K, Yohda M (2006) Proteins 64:502–512

    Article  CAS  Google Scholar 

  20. Ohtaki A, Nakano Y, Iizuka R, Arakawa T, Yamada K, Odaka M, Yohda M (2008) Proteins 70:1167–1174

    Article  CAS  Google Scholar 

  21. Puig E, Garcia-Viloca M, Gonzalez-Lafont A, Lluch JM, Field MJ (2007) J Phys Chem B 111:2385–2397

    Article  CAS  Google Scholar 

  22. Puig E, Mixcoha E, Garcia-Viloca M, Gonzalez-Lafont A, Lluch JM (2009) J Am Chem Soc 131:3509–3521

    Article  CAS  Google Scholar 

  23. Spies MA, Reese JG, Dodd D, Pankow KL, Blanke SR, Baudry J (2009) J Am Chem Soc 131:5274–5284

    Article  CAS  Google Scholar 

  24. Stenta M, Calvaresi M, Alto P, Spinelli D, Garavelli M, Bottoni A (2008) J Phys Chem B 112:1057–1059

    Article  CAS  Google Scholar 

  25. Rubinstein A, Major DT (2009) J Am Chem Soc 131:8513–8521

    Article  CAS  Google Scholar 

  26. Stenta M, Calvaresi M, Altoe P, Spinelli D, Garavelli M, Galeazzi R, Bottoni A (2009) J Chem Theory Comput 5:1915–1930

    Article  CAS  Google Scholar 

  27. Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700–733

    Article  CAS  Google Scholar 

  28. Gao J (1996) Acc Chem Res 29:298–305

    Article  CAS  Google Scholar 

  29. Warshel A (2003) Annu Rev Biophys Biomol Struct 32:425–443

    Article  CAS  Google Scholar 

  30. Riccardi D, Schaefer P, Yang Y, Yu H, Ghosh N, Prat-Resina X, Konig P, Li G, Xu D, Guo H, Elstner M, Cui Q (2006) J Phys Chem B 110:6458–6469

    Article  CAS  Google Scholar 

  31. Friesner RA, Guallar V (2005) Annu Rev Phys Chem 56:389–427

    Article  CAS  Google Scholar 

  32. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seigert G (1998) Phys Rev B58:7260–7268

    Google Scholar 

  33. Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2001) J Phys Chem B 105:569–585

    Article  CAS  Google Scholar 

  34. Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) J Chem Phys 114:5149–5155

    Article  CAS  Google Scholar 

  35. Pu J, Gao J, Truhlar DG (2004) J Phys Chem A 108:5454–5463

    Article  CAS  Google Scholar 

  36. Witek HA, Morokuma K (2004) J Comput Chem 25:1858–1864

    Article  CAS  Google Scholar 

  37. Cui Q, Elstner M, Karplus M (2002) J Phys Chem B 106:2721–2740

    Article  CAS  Google Scholar 

  38. Zhang X, Harrison DH, Cui Q (2002) J Am Chem Soc 124:14871–14878

    Article  CAS  Google Scholar 

  39. Guo H, Rao N, Xu Q, Guo H (2005) J Am Chem Soc 127:3191–3197

    Article  CAS  Google Scholar 

  40. Liu J, Wang X, Xu D (2010) J Phys Chem B 114:1462–1470

    Article  CAS  Google Scholar 

  41. Xu Q, Li L, Guo H (2010) J Phys Chem B 114:10594–10600

    Article  CAS  Google Scholar 

  42. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  43. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  44. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  45. Brooks CL III, Brunger A, Karplus M (1985) Biopolymers 24:843–865

    Article  CAS  Google Scholar 

  46. Steinbach PJ, Brooks BR (1994) J Comput Chem 15:667–683

    Article  CAS  Google Scholar 

  47. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  48. Torrie GM, Valleau JP (1977) J Comput Phys 23:187–199

    Article  Google Scholar 

  49. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) J Comput Chem 13:1011–1021

    Article  CAS  Google Scholar 

  50. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  51. National Center for Biotechnology Information. PubChem Compound Database (2011) CID = 5460294, http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5460294&loc=ec_rcs accessed Mar 11 2011

  52. National Center for Biotechnology Information. PubChem Compound Database (2011); CID = 5460295, http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5460295&loc=ec_rcs accessed Mar 11 2011

  53. Schuettelkopf AW, van Aalten DMF (2004) Acta Cryst D 60:1355–1363

    Article  Google Scholar 

  54. Weiner SJ, Kollman PA, Case DA, Singh UC, Ghio C, Alagona G, Profeta S, Weiner P (1984) J Am Chem Soc 106:765–784

    Article  CAS  Google Scholar 

  55. Elstner M, Frauenheim T, Kaxiras E, Seifert G, Suhai S (2000) Phys Status Solidi B 217:357–376

    Article  CAS  Google Scholar 

  56. Riccardi D, Konig P, Guo H, Cui Q (2008) Biochemistry 47:2369–2378

    Article  CAS  Google Scholar 

  57. Xu Q, Guo H, Gorin A, Guo H (2007) J Phys Chem B 111:6501–6506

    Article  CAS  Google Scholar 

  58. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project has been supported by the National Natural Science Foundation of China (Grant Nos. 20773089 and 21075083) and National Basic Research Program of China (973 Program) (2011CB201202). We appreciate Prof. Dingguo Xu for his many stimulating discussions. The CHARMM calculations have been carried out in Wuhan Institute of Physics and Mathematics, the Chinese Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Guo, Y. & Xue, Y. QM/MM study on catalytic mechanism of aspartate racemase from Pyrococcus horikoshii OT3. Theor Chem Acc 129, 781–791 (2011). https://doi.org/10.1007/s00214-011-0935-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0935-7

Keywords

Navigation