Skip to main content
Log in

An atomistic model for simulations of nilotinib and nilotinib/kinase binding

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Nilotinib is a novel anticancer drug, which specifically binds to the Abl kinase and blocks its signaling activity. In order to model the nilotinib/protein interactions, we have developed a molecular mechanics force field for nilotinib, consistent with the CHARMM force field for proteins and nucleic acids. Atomic charges were derived by utilizing a supermolecule ab initio approach. We considered the ab initio energies and geometries of a probe water molecule that interacts with nilotinib fragments at six different positions. We investigated both neutral and protonated states of nilotinib. The final rms deviation between the ab initio and the force field energies, averaged over both forms, was equal 0.2 kcal/mol. The model reproduces the ab initio geometry and flexibility of nilotinib. To apply the force field to nilotinib/Abl simulations, it is also necessary to determine the most likely protein and nilotinib protonation state when it binds to Abl. This task was carried out using molecular dynamics free energy simulations. The simulations indicate that nilotinib can interact with Abl in protonated and deprotonated forms, with the protonated form more favoured for the interaction. In the course of our calculations, we established that the His361, a titratable amino acid residue that mediates the interaction, prefers to be neutral. These insights and models should be of interest for drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R, Scapozza L (2003) Lancet Oncol 4:75–85

    Article  Google Scholar 

  2. Levitski A (1996) Curr Opin Cell Biol 8:239–244

    Article  Google Scholar 

  3. Chen J, Zhang X, Fernandez A (2007) Curr Drug Targets 7:1443–1454

    Google Scholar 

  4. Aleksandrov A, Simonson T (2010) J Biol Chem 285:13807–13815

    Article  CAS  Google Scholar 

  5. Nagar B, Hantschel O, Young M, Scheffzek K, Veach D, Bornmann W, Clarkson B, Superti-Furga G, Kuriyan J (2003) Cell 112:859–871

    Article  CAS  Google Scholar 

  6. Deininger M, Buchdunger E, Druker BJ (2005) Blood 105:2640–2653

    Article  CAS  Google Scholar 

  7. Vajpai N, Strauss A, Fendrich G, Cowan-Jacob S, Manley P, Grzesiek S, Jahnke W (2008) J Biol Chem 283:18292–18302

    Article  CAS  Google Scholar 

  8. Weisberg E, Manley P, Mestan J, Cowan-Jacob S, Ray A, Griffin JD (2006) Br J Cancer 94:1765–1769

    Article  CAS  Google Scholar 

  9. DeRemer DL, Ustun C, Natarajan K (2008) Clin Ther 30:1956–1975

    Article  CAS  Google Scholar 

  10. Giles F, Rosti G, Beris P, Clark R, le Coutre P, Mahon F, Steegmann J, Valent P, Saglio G (2010) Exp Rev Hematol 3:665–673

    Article  CAS  Google Scholar 

  11. Weisberg E et al (2005) Cancer Cell 7:129–141

    Article  CAS  Google Scholar 

  12. Mackerell A et al (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  13. Mackerell A, Wiorkiewicz-Kuczera J, Karplus M (1995) J Am Chem Soc 117:11946–11975

    Article  CAS  Google Scholar 

  14. Jorgensen W, Chandrasekar J, Madura J, Impey R, Klein M (1983) J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  15. Trylska J, Antosiewicz J, Geller M, Hodge C, Klabe R, Head M, Gilson M (1999) Prot Sci 8:180–195

    Article  CAS  Google Scholar 

  16. Aleksandrov A, Proft J, Hinrichs W, Simonson T (2007) ChemBioChem 8:675–685

    Article  CAS  Google Scholar 

  17. Donnini S, Villa A, Groenhof G, Mark AE, Wierenga RK, Juffer A (2009) Proteins 76:138–150

    Article  CAS  Google Scholar 

  18. Sham Y, Chu Z, Warshel A (1997) J Phys Chem B 101:4458–4472

    Article  CAS  Google Scholar 

  19. Simonson T, Carlsson J, Case DA (2004) J Am Chem Soc 126:4167–4180

    Article  CAS  Google Scholar 

  20. Archontis G, Simonson T (2005) Biophys J 88:3888–3904

    Article  CAS  Google Scholar 

  21. Aleksandrov A, Simonson T (2006) J Comp Chem 27:1517–1533

    Article  CAS  Google Scholar 

  22. Aleksandrov A, Simonson T (2009) J Comp Chem 30:243–255

    Article  CAS  Google Scholar 

  23. Aleksandrov A, Simonson T (2010) J Comp Chem 31: 1550–1560

    CAS  Google Scholar 

  24. Foloppe N, MacKerell A (2000) J Comp Chem 21:86–104

    Article  CAS  Google Scholar 

  25. Beglov D, Roux B (1994) J Chem Phys 100:9050–9063

    Article  CAS  Google Scholar 

  26. Simonson T (2000) J Phys Chem B 104:6509–6513

    Article  CAS  Google Scholar 

  27. Stote R, States D, Karplus M (1991) J Chem Phys 88:2419–2433

    CAS  Google Scholar 

  28. Brooks B, Bruccoleri R, Olafson B, States D, Swaminathan S, Karplus M (1983) J Comp Chem 4:187–217

    Article  CAS  Google Scholar 

  29. Szakacs Z, Beni S, Varga Z, Orfi L, Keri G, Noszal B (2005) J Med Chem 48:249–255

    Article  CAS  Google Scholar 

  30. Vaughan JD, Vaughan VL, Daly SS, Smith WA (1980) J Org Chem 45:3108–3111

    Article  CAS  Google Scholar 

  31. Bruice T, Schmir G (1958) J Am Chem Soc 80:148–156

    Article  CAS  Google Scholar 

  32. Simonson T (2001) Free energy calculations. In: Becker O, Mackerell A Jr, Roux B, Watanabe M (eds) Computational biochemistry & biophysics, Chap. 9. Marcel Dekker, New York

    Google Scholar 

  33. Thompson D, Plateau P, Simonson T (2006) ChemBioChem 7:337–344

    Article  CAS  Google Scholar 

  34. Simonson T, Archontis G, Karplus M (2002) Acc Chem Res 35:430–437

    Article  CAS  Google Scholar 

  35. Hodel A, Simonson T, Fox RO, Brünger AT (1993) J Phys Chem 97:3409–3417

    Article  CAS  Google Scholar 

  36. Reinhardt W, Miller M, Amon L (2001) Acc Chem Res 34:607–614

    Article  CAS  Google Scholar 

  37. Shirts MR, Pitera JW, Swope WC, Pande VS (2003) J Chem Phys 119:5740–5761

    Article  CAS  Google Scholar 

  38. Hermans J (1991) J Phys Chem 95:9029–9032

    Article  CAS  Google Scholar 

  39. Wood RH (1991) J Phys Chem 95:4838–4842

    Article  CAS  Google Scholar 

  40. Hummer G (2001) J Chem Phys 114:7330–7337

    Article  CAS  Google Scholar 

  41. Thompson D, Simonson T (2006) J Biol Chem 281:23792–23803

    Article  CAS  Google Scholar 

  42. Aleksandrov A, Simonson T (2008) Biochemistry 47:13594–13603

    Article  CAS  Google Scholar 

  43. Eberini I, Baptista A, Gianazza E, Fraternali F, Beringhelli T (2004) Proteins 54:744–758

    Article  CAS  Google Scholar 

  44. Simonson T, Brünger AT (1994) J Phys Chem 98:4683–4694

    Article  CAS  Google Scholar 

  45. Mackerell A Jr (2001) In: Becker O, Mackerell A Jr, Roux B, Watanabe M (eds) Computational biochemistry & biophysics, Chap. 1. Marcel Dekker, New York

    Google Scholar 

  46. Simonson T (2001) Curr Opin Struct Biol 11:243–252

    Article  CAS  Google Scholar 

  47. Richarz R, Wuthrich K (1975) Biopolymers 17:2133–2141

    Article  Google Scholar 

  48. Asaki T, Sugiyama Y, Hamamoto T, Higashioka M, Umehara M, Naito H, Niwa T (2006) Bioorg Med Chem Lett 16:1421–1425

    Article  CAS  Google Scholar 

  49. Puttini M et al (2008) Haematologica 93:653–661

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Thomas Simonson for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Aleksandrov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (53 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valeyev, N.V., Aleksandrov, A. An atomistic model for simulations of nilotinib and nilotinib/kinase binding. Theor Chem Acc 129, 747–756 (2011). https://doi.org/10.1007/s00214-011-0931-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0931-y

Keywords

Navigation