Skip to main content
Log in

Stability criterion for organic ferromagnetism

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Stability criterion for organic ferromagnetism is derived from crystal orbital method. For a given flat-band system, there exists a unique set of Wannier functions localized near each unit cell, which should be symmetric with respect to the lattice vector. The set of Wannier functions minimizes the exchange integral of the system within the freedom of degeneracy. When each Wannier function spans common atoms between the adjacent cells, the system becomes ferromagnetic. On the other hand, when each Wannier function spreads only at one unit cell, the system becomes antiferromagnetic. The proof of this rule is given by variational principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ovchinnikov AA (1978) Theor Chim Acta 47:297

    Article  CAS  Google Scholar 

  2. McConnell HM (1963) J Chem Phys 39:1910

    Article  CAS  Google Scholar 

  3. Lieb EH (1989) Phys Rev Lett 62:1201

    Article  Google Scholar 

  4. Longuet-Higgins HC (1950) J Chem Phys 18:265

    Article  CAS  Google Scholar 

  5. Borden WT, Davidson ER (1977) J Am Chem Soc 99:4587

    Article  CAS  Google Scholar 

  6. Borden WT (1993) Mol Cryst Liq Cryst 232:195

    Article  CAS  Google Scholar 

  7. Aoki Y, Imamura A (1999) Int J Quantum Chem 74:491

    Article  CAS  Google Scholar 

  8. Dowd P (1972) Acc Chem Res 5:242

    Article  CAS  Google Scholar 

  9. Wenthold PG, Hu J, Squires RR, Lineberger WC (1996) J Am Chem Soc 118:475

    Article  CAS  Google Scholar 

  10. Cramer CJ, Smith BA (1996) J Phys Chem 100:9664

    Article  CAS  Google Scholar 

  11. Hatanaka M, Shiba R (2006) J Comp Chem Jpn 5:171

    Article  CAS  Google Scholar 

  12. Nakamura K, Osamura Y, Iwata S (1989) Chem Phys 136:67

    Article  CAS  Google Scholar 

  13. Koseki S, Toyota A (1997) J Phys Chem A 101:5712

    Article  CAS  Google Scholar 

  14. Hrovat DA, Borden WT (1997) J Mol Struct (THEOCHEM) 398–399:211

    Article  Google Scholar 

  15. Matsumoto T, Koga N, Iwamura H (1992) J Am Chem Soc 114:5448

    Article  CAS  Google Scholar 

  16. Matsumoto T, Ishida T, Koga N, Iwamura H (1992) J Am Chem Soc 114:9952

    Article  CAS  Google Scholar 

  17. Pranata J (1992) J Am Chem Soc 114:10537

    Article  CAS  Google Scholar 

  18. Orimoto Y, Imai T, Naka K, Aoki Y (2006) J Phys Chem A 110:5803

    Article  CAS  Google Scholar 

  19. Orimoto Y, Aoki Y (2006) J Chem Theory Comput 2:786

    Article  CAS  Google Scholar 

  20. Tyutyulkov N, Schuster P, Polansky O (1983) Theor Chim Acta 63:291

    Article  CAS  Google Scholar 

  21. Tyutyulkov NN, Karabunarliev SC (1986) Int J Quantum Chem 29:1325

    Article  CAS  Google Scholar 

  22. Dietz F, Tyutyulkov N (2001) Chem Phys 264:37

    Article  CAS  Google Scholar 

  23. Yamaguchi K, Fueno T (1989) Chem Phys Lett 159:465

    Article  CAS  Google Scholar 

  24. Yamaguchi K, Toyoda Y, Fueno T (1987) Synth Met 19:81

    Article  CAS  Google Scholar 

  25. Mataga N (1968) Theor Chim Acta 10:372

    Article  CAS  Google Scholar 

  26. Rajca A (1994) Chem Rev 94:871

    Article  CAS  Google Scholar 

  27. Rajca A, Wongsriratanakul J, Rajca S (2001) Science 294:1503

    Article  CAS  Google Scholar 

  28. Rajca S, Rajca A (2001) J Solid State Chem 159:460

    Article  CAS  Google Scholar 

  29. Izuoka A, Murata S, Sugawara T, Iwamura H (1985) J Am Chem Soc 107:1786

    Article  CAS  Google Scholar 

  30. Izuoka A, Murata S, Sugawara T, Iwamura H (1987) J Am Chem Soc 109:2631

    Article  CAS  Google Scholar 

  31. Iwamura H (1990) Adv Phys Org Chem 26:179

    Article  CAS  Google Scholar 

  32. Iwamura H (2005) Proc Japan Acad Ser B 81:233

    Article  CAS  Google Scholar 

  33. Hatanaka M, Shiba R (2007) Bull Chem Soc Jpn 80:2342

    Article  CAS  Google Scholar 

  34. Hatanaka M, Shiba R (2008) Bull Chem Soc Jpn 81:460

    Article  CAS  Google Scholar 

  35. Hatanaka M, Shiba R (2008) Bull Chem Soc Jpn 81:966

    Article  CAS  Google Scholar 

  36. Hatanaka M, Shiba R (2009) Bull Chem Soc Jpn 82:206

    Article  CAS  Google Scholar 

  37. Mitani M, Takano Y, Yoshioka Y, Yamaguchi K (1999) J Chem Phys 111:1309

    Article  CAS  Google Scholar 

  38. Pranata J, Dougherty DA (1987) J Am Chem Soc 109:1621

    Article  CAS  Google Scholar 

  39. Kohn W (1959) Phys Rev 115:809

    Article  Google Scholar 

  40. Marzari N, Vanderbilt D (1997) Phys Rev B 56:12847

    Article  CAS  Google Scholar 

  41. Hatanaka M (2010) Chem Phys Lett 484:276

    Article  CAS  Google Scholar 

  42. Hatanaka M (2010) Chem Phys Lett 488:187

    Article  CAS  Google Scholar 

  43. Robertson CM, Leitch AA, Cvrkalj K, Reed RW, Myles DJT, Dube PA, Oakley RT (2008) J Am Chem Soc 130:8414

    Article  CAS  Google Scholar 

  44. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  45. GAMESS Version 12 JAN 2009 (R1), Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Hatanaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatanaka, M. Stability criterion for organic ferromagnetism. Theor Chem Acc 129, 151–160 (2011). https://doi.org/10.1007/s00214-011-0923-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0923-y

Keywords

Navigation