Abstract
The structures and reactions of different rhodium oxides and dioxygen complexes with RhO4 stoichiometry were investigated by matrix isolation infrared spectroscopy and quantum chemical calculations. The inserted RhO2 molecule reacted with dioxygen upon sample annealing to form the [(η1-O2)RhO2] complex, which can further isomerize to the known [(η2-O2)RhO2] complex via infrared irradiation. Both experimental and theoretical studies suggest that the [(η1-O2)RhO2] complex has a doublet ground state with non-planar C s symmetry in which the O2 ligand is end-on bonded to the rhodium centre. Although rhodium tetroxide is predicted to be a stable molecule with D 2d symmetry at different level of theory, no evidence is found for the formation of this Rh(VIII) species in noble gas matrices. Our experiments also suggest the formation of a new peroxo [Rh(η2-O2)2] complex, which is calculated to have a doublet ground state with D 2d symmetry. This peroxo complex undergoes isomerization to the known superoxo [Rh(η2-O2)2] complex via the rotation of the dioxygen ligand under infrared irradiation.
This is a preview of subscription content, access via your institution.









References
Ruff O, Vidic E (1924) Z Anorg Allgem Chem 136:49
Pley M, Wickleder MS (2005) J Solid State Chem 178:3206
Bailey AJ, Bhowon MG, Griffith WP, Shoair AGF, White AJP, Williams DJ (1997) J Chem Soc Dalton Trans 3245–3250
Jewiss HC, Levason W, Tajik M, Webster M, Walker NPC (1985) J Chem Soc Dalton Trans 199–203
Holleman AF, Wiberg E (2007) Lehrbuch der Anorganischen Chemie. Walter de Gruyter, Berlin
Riedel S, Kaupp M (2009) Coord Chem Rev 253:606
Düllmann CE, Bruchle W, Dressler R, Eberhardt K, Eichler B, Eichler R, Gaggeler HW, Ginter TN, Glaus F, Gregorich KE, Hoffman DC, Jager E, Jost DT, Kirbach UW, Lee DM, Nitsche H, Patin JB, Pershina V, Piguet D, Qin Z, Schadel M, Schausten B, Schimpf E, Schott HJ, Soverna S, Sudowe R, Thorle P, Timokhin SN, Trautmann N, Turler A, Vahle A, Wirth G, Yakushev AB, Zielinski PM (2002) Nature 418:859
Gong Y, Zhou M, Kaupp M, Riedel S (2009) Angew Chem Int Ed 48:7879
Himmel D, Knapp C, Patzschke M, Riedel S (2010) Chem Phys Chem 11:865
Wang G, Zhou M (2008) Int Rev Phys Chem 27:1
Becke AD (1993) J Chem Phys 98:5648
Dunning TH Jr (1989) J Chem Phys 90:1007
Peterson Kirk A, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Revision B.04 ed. Pittsburgh PA
Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Rauhut G, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pitzer R, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T (2006) MOLPRO 2006.1 ed. Birmingham, UK
Riedel S, Straka M, Kaupp M (2004) Phys Chem Chem Phys 6:1122
Riedel S, Kaupp M (2006) Angew Chem Int Ed 45:3708
Riedel S, Kaupp M (2006) Inorg Chem 45:1228
Himmel D, Riedel S (2007) Inorg Chem 46:5338
Riedel S (2007) J Fluorine Chem 128:938
Lee TJ, Taylor PR (1989) Int J Quantum Chem 23:199
Li ZH, Gong Y, Fan K, Zhou M (2008) J Phys Chem A 112:13641
Chertihin GV, Andrews L (1998) J Chem Phys 108:6404
Citra A, Andrews L (1999) J Phys Chem A 103:4845
Gong Y, Zhou M (2009) J Phys Chem A 113:4990
Yang R, Gong Y, Zhou H, Zhou M (2007) J Phys Chem A 111:64
Jacox ME (1994) Chem Phys 189:149
Gong Y, Zhou M, Andrews L (2009) Chem Rev 109:6765
Swart M (2008) J Chem Theory Comput 4:2057
Rong C, Lian S, Yin D, Shen B, Zhong A, Bartolotti L, Liu S (2006) J Chem Phys 125:174102/1
Gong Y, Zhou M, Andrews L (2007) J Phys Chem A 111:12001
Danset D, Alikhani ME, Manceron L (2005) J Phys Chem A 109:105
Acknowledgments
The authors are grateful to I. Krossing and M. Kaupp for kindly providing computational resources. M.Z. thanks the National Basics Research Program of China (2007CB815203) and NSFC (20933003) for financial support. S.R. thanks the Fonds der Chemischen Industrie, the DFG and the Alexander von Humboldt Foundation for financial support. T.S. thanks the Institut für Analytische und Anorganische Chemie for financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Professor Pekka Pyykkö on the occasion of his 70th birthday and published as part of the Pyykkö Festschrift Issue.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gong, Y., Zhou, M., Andrews, L. et al. Is rhodium tetroxide in the formal oxidation state VIII stable? a quantum chemical and matrix isolation investigation of rhodium oxides. Theor Chem Acc 129, 667–676 (2011). https://doi.org/10.1007/s00214-011-0919-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00214-011-0919-7
Keywords
- Rhodium oxides
- Matrix isolation spectroscopy
- Quantum chemical calculations
- High oxidation states