Skip to main content

Is rhodium tetroxide in the formal oxidation state VIII stable? a quantum chemical and matrix isolation investigation of rhodium oxides


The structures and reactions of different rhodium oxides and dioxygen complexes with RhO4 stoichiometry were investigated by matrix isolation infrared spectroscopy and quantum chemical calculations. The inserted RhO2 molecule reacted with dioxygen upon sample annealing to form the [(η1-O2)RhO2] complex, which can further isomerize to the known [(η2-O2)RhO2] complex via infrared irradiation. Both experimental and theoretical studies suggest that the [(η1-O2)RhO2] complex has a doublet ground state with non-planar C s symmetry in which the O2 ligand is end-on bonded to the rhodium centre. Although rhodium tetroxide is predicted to be a stable molecule with D 2d symmetry at different level of theory, no evidence is found for the formation of this Rh(VIII) species in noble gas matrices. Our experiments also suggest the formation of a new peroxo [Rh(η2-O2)2] complex, which is calculated to have a doublet ground state with D 2d symmetry. This peroxo complex undergoes isomerization to the known superoxo [Rh(η2-O2)2] complex via the rotation of the dioxygen ligand under infrared irradiation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Ruff O, Vidic E (1924) Z Anorg Allgem Chem 136:49

    Article  CAS  Google Scholar 

  2. Pley M, Wickleder MS (2005) J Solid State Chem 178:3206

    Article  CAS  Google Scholar 

  3. Bailey AJ, Bhowon MG, Griffith WP, Shoair AGF, White AJP, Williams DJ (1997) J Chem Soc Dalton Trans 3245–3250

  4. Jewiss HC, Levason W, Tajik M, Webster M, Walker NPC (1985) J Chem Soc Dalton Trans 199–203

  5. Holleman AF, Wiberg E (2007) Lehrbuch der Anorganischen Chemie. Walter de Gruyter, Berlin

    Book  Google Scholar 

  6. Riedel S, Kaupp M (2009) Coord Chem Rev 253:606

    Article  CAS  Google Scholar 

  7. Düllmann CE, Bruchle W, Dressler R, Eberhardt K, Eichler B, Eichler R, Gaggeler HW, Ginter TN, Glaus F, Gregorich KE, Hoffman DC, Jager E, Jost DT, Kirbach UW, Lee DM, Nitsche H, Patin JB, Pershina V, Piguet D, Qin Z, Schadel M, Schausten B, Schimpf E, Schott HJ, Soverna S, Sudowe R, Thorle P, Timokhin SN, Trautmann N, Turler A, Vahle A, Wirth G, Yakushev AB, Zielinski PM (2002) Nature 418:859

    Article  Google Scholar 

  8. Gong Y, Zhou M, Kaupp M, Riedel S (2009) Angew Chem Int Ed 48:7879

    Article  CAS  Google Scholar 

  9. Himmel D, Knapp C, Patzschke M, Riedel S (2010) Chem Phys Chem 11:865

    CAS  Google Scholar 

  10. Wang G, Zhou M (2008) Int Rev Phys Chem 27:1

    Article  Google Scholar 

  11. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  12. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  13. Peterson Kirk A, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101

    Article  CAS  Google Scholar 

  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Revision B.04 ed. Pittsburgh PA

  15. Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Rauhut G, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pitzer R, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T (2006) MOLPRO 2006.1 ed. Birmingham, UK

  16. Riedel S, Straka M, Kaupp M (2004) Phys Chem Chem Phys 6:1122

    Article  CAS  Google Scholar 

  17. Riedel S, Kaupp M (2006) Angew Chem Int Ed 45:3708

    Article  CAS  Google Scholar 

  18. Riedel S, Kaupp M (2006) Inorg Chem 45:1228

    Article  CAS  Google Scholar 

  19. Himmel D, Riedel S (2007) Inorg Chem 46:5338

    Article  CAS  Google Scholar 

  20. Riedel S (2007) J Fluorine Chem 128:938

    Article  CAS  Google Scholar 

  21. Lee TJ, Taylor PR (1989) Int J Quantum Chem 23:199

    CAS  Google Scholar 

  22. Li ZH, Gong Y, Fan K, Zhou M (2008) J Phys Chem A 112:13641

    Article  CAS  Google Scholar 

  23. Chertihin GV, Andrews L (1998) J Chem Phys 108:6404

    Article  CAS  Google Scholar 

  24. Citra A, Andrews L (1999) J Phys Chem A 103:4845

    Article  CAS  Google Scholar 

  25. Gong Y, Zhou M (2009) J Phys Chem A 113:4990

    Article  CAS  Google Scholar 

  26. Yang R, Gong Y, Zhou H, Zhou M (2007) J Phys Chem A 111:64

    Article  CAS  Google Scholar 

  27. Jacox ME (1994) Chem Phys 189:149

    Article  CAS  Google Scholar 

  28. Gong Y, Zhou M, Andrews L (2009) Chem Rev 109:6765

    Article  CAS  Google Scholar 

  29. Swart M (2008) J Chem Theory Comput 4:2057

    Article  CAS  Google Scholar 

  30. Rong C, Lian S, Yin D, Shen B, Zhong A, Bartolotti L, Liu S (2006) J Chem Phys 125:174102/1

    Article  CAS  Google Scholar 

  31. Gong Y, Zhou M, Andrews L (2007) J Phys Chem A 111:12001

    Article  CAS  Google Scholar 

  32. Danset D, Alikhani ME, Manceron L (2005) J Phys Chem A 109:105

    Article  CAS  Google Scholar 

Download references


The authors are grateful to I. Krossing and M. Kaupp for kindly providing computational resources. M.Z. thanks the National Basics Research Program of China (2007CB815203) and NSFC (20933003) for financial support. S.R. thanks the Fonds der Chemischen Industrie, the DFG and the Alexander von Humboldt Foundation for financial support. T.S. thanks the Institut für Analytische und Anorganische Chemie for financial support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sebastian Riedel.

Additional information

Dedicated to Professor Pekka Pyykkö on the occasion of his 70th birthday and published as part of the Pyykkö Festschrift Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 39 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gong, Y., Zhou, M., Andrews, L. et al. Is rhodium tetroxide in the formal oxidation state VIII stable? a quantum chemical and matrix isolation investigation of rhodium oxides. Theor Chem Acc 129, 667–676 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Rhodium oxides
  • Matrix isolation spectroscopy
  • Quantum chemical calculations
  • High oxidation states