Advertisement

Is rhodium tetroxide in the formal oxidation state VIII stable? a quantum chemical and matrix isolation investigation of rhodium oxides

  • Yu Gong
  • Mingfei Zhou
  • Lester Andrews
  • Tobias Schlöder
  • Sebastian Riedel
Regular Article

Abstract

The structures and reactions of different rhodium oxides and dioxygen complexes with RhO4 stoichiometry were investigated by matrix isolation infrared spectroscopy and quantum chemical calculations. The inserted RhO2 molecule reacted with dioxygen upon sample annealing to form the [(η1-O2)RhO2] complex, which can further isomerize to the known [(η2-O2)RhO2] complex via infrared irradiation. Both experimental and theoretical studies suggest that the [(η1-O2)RhO2] complex has a doublet ground state with non-planar C s symmetry in which the O2 ligand is end-on bonded to the rhodium centre. Although rhodium tetroxide is predicted to be a stable molecule with D 2d symmetry at different level of theory, no evidence is found for the formation of this Rh(VIII) species in noble gas matrices. Our experiments also suggest the formation of a new peroxo [Rh(η2-O2)2] complex, which is calculated to have a doublet ground state with D 2d symmetry. This peroxo complex undergoes isomerization to the known superoxo [Rh(η2-O2)2] complex via the rotation of the dioxygen ligand under infrared irradiation.

Keywords

Rhodium oxides Matrix isolation spectroscopy Quantum chemical calculations High oxidation states 

Notes

Acknowledgments

The authors are grateful to I. Krossing and M. Kaupp for kindly providing computational resources. M.Z. thanks the National Basics Research Program of China (2007CB815203) and NSFC (20933003) for financial support. S.R. thanks the Fonds der Chemischen Industrie, the DFG and the Alexander von Humboldt Foundation for financial support. T.S. thanks the Institut für Analytische und Anorganische Chemie for financial support.

Supplementary material

214_2011_919_MOESM1_ESM.doc (39 kb)
Supplementary material 1 (DOC 39 kb)

References

  1. 1.
    Ruff O, Vidic E (1924) Z Anorg Allgem Chem 136:49CrossRefGoogle Scholar
  2. 2.
    Pley M, Wickleder MS (2005) J Solid State Chem 178:3206CrossRefGoogle Scholar
  3. 3.
    Bailey AJ, Bhowon MG, Griffith WP, Shoair AGF, White AJP, Williams DJ (1997) J Chem Soc Dalton Trans 3245–3250Google Scholar
  4. 4.
    Jewiss HC, Levason W, Tajik M, Webster M, Walker NPC (1985) J Chem Soc Dalton Trans 199–203Google Scholar
  5. 5.
    Holleman AF, Wiberg E (2007) Lehrbuch der Anorganischen Chemie. Walter de Gruyter, BerlinCrossRefGoogle Scholar
  6. 6.
    Riedel S, Kaupp M (2009) Coord Chem Rev 253:606CrossRefGoogle Scholar
  7. 7.
    Düllmann CE, Bruchle W, Dressler R, Eberhardt K, Eichler B, Eichler R, Gaggeler HW, Ginter TN, Glaus F, Gregorich KE, Hoffman DC, Jager E, Jost DT, Kirbach UW, Lee DM, Nitsche H, Patin JB, Pershina V, Piguet D, Qin Z, Schadel M, Schausten B, Schimpf E, Schott HJ, Soverna S, Sudowe R, Thorle P, Timokhin SN, Trautmann N, Turler A, Vahle A, Wirth G, Yakushev AB, Zielinski PM (2002) Nature 418:859CrossRefGoogle Scholar
  8. 8.
    Gong Y, Zhou M, Kaupp M, Riedel S (2009) Angew Chem Int Ed 48:7879CrossRefGoogle Scholar
  9. 9.
    Himmel D, Knapp C, Patzschke M, Riedel S (2010) Chem Phys Chem 11:865Google Scholar
  10. 10.
    Wang G, Zhou M (2008) Int Rev Phys Chem 27:1CrossRefGoogle Scholar
  11. 11.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  12. 12.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  13. 13.
    Peterson Kirk A, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101CrossRefGoogle Scholar
  14. 14.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven JT, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Revision B.04 ed. Pittsburgh PAGoogle Scholar
  15. 15.
    Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Rauhut G, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Lloyd AW, McNicholas SJ, Meyer W, Mura ME, Nicklaß A, Palmieri P, Pitzer R, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T (2006) MOLPRO 2006.1 ed. Birmingham, UKGoogle Scholar
  16. 16.
    Riedel S, Straka M, Kaupp M (2004) Phys Chem Chem Phys 6:1122CrossRefGoogle Scholar
  17. 17.
    Riedel S, Kaupp M (2006) Angew Chem Int Ed 45:3708CrossRefGoogle Scholar
  18. 18.
    Riedel S, Kaupp M (2006) Inorg Chem 45:1228CrossRefGoogle Scholar
  19. 19.
    Himmel D, Riedel S (2007) Inorg Chem 46:5338CrossRefGoogle Scholar
  20. 20.
    Riedel S (2007) J Fluorine Chem 128:938CrossRefGoogle Scholar
  21. 21.
    Lee TJ, Taylor PR (1989) Int J Quantum Chem 23:199Google Scholar
  22. 22.
    Li ZH, Gong Y, Fan K, Zhou M (2008) J Phys Chem A 112:13641CrossRefGoogle Scholar
  23. 23.
    Chertihin GV, Andrews L (1998) J Chem Phys 108:6404CrossRefGoogle Scholar
  24. 24.
    Citra A, Andrews L (1999) J Phys Chem A 103:4845CrossRefGoogle Scholar
  25. 25.
    Gong Y, Zhou M (2009) J Phys Chem A 113:4990CrossRefGoogle Scholar
  26. 26.
    Yang R, Gong Y, Zhou H, Zhou M (2007) J Phys Chem A 111:64CrossRefGoogle Scholar
  27. 27.
    Jacox ME (1994) Chem Phys 189:149CrossRefGoogle Scholar
  28. 28.
    Gong Y, Zhou M, Andrews L (2009) Chem Rev 109:6765CrossRefGoogle Scholar
  29. 29.
    Swart M (2008) J Chem Theory Comput 4:2057CrossRefGoogle Scholar
  30. 30.
    Rong C, Lian S, Yin D, Shen B, Zhong A, Bartolotti L, Liu S (2006) J Chem Phys 125:174102/1CrossRefGoogle Scholar
  31. 31.
    Gong Y, Zhou M, Andrews L (2007) J Phys Chem A 111:12001CrossRefGoogle Scholar
  32. 32.
    Danset D, Alikhani ME, Manceron L (2005) J Phys Chem A 109:105CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yu Gong
    • 1
  • Mingfei Zhou
    • 1
  • Lester Andrews
    • 2
  • Tobias Schlöder
    • 3
  • Sebastian Riedel
    • 3
  1. 1.Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Advanced Materials LaboratoryFudan UniversityShanghaiChina
  2. 2.Department of ChemistryUniversity of VirginiaCharlottesvilleUSA
  3. 3.Institut für Anorganische und Analytische ChemieAlbert-Ludwigs Universität FreiburgFreiburg i. Br.Germany

Personalised recommendations