Skip to main content
Log in

A computational study of the radical–radical reaction of O(3P) + C2H5 with comparisons to gas-phase kinetics and crossed-beam experiments

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

We present density functional theory (DFT) and complete basis set (CBS) calculations of the prototypical radical–radical reaction of ground–state atomic oxygen [O(3P)] with ethyl (C2H5) radicals. The respective reaction mechanisms and dynamics were investigated on the doublet potential energy surfaces using the DFT method and CBS model. In the title reaction, the barrierless addition of O(3P) to C2H5 led to the formation of energy-rich intermediates that underwent subsequent isomerization and decomposition to yield various products. The products predicted to be found were: H2CO + CH3, CH3CHO + H, c–CH2OCH2 + H, 1,3CH3COH + H, 1,3HCOH + CH3, CH2CHOH + H, C2H3 + H2O, and CH2CH2 + OH. In particular, unlike previous kinetic results, proposed to proceed only through the direct H-atom abstraction process, two distinctive pathways to the formation of CH2CH2 + OH were predicted to be in competition: direct, barrierless H-atom abstraction mechanism versus addition process. The competition was consistent with the recent crossed-beam investigations, and their microscopic dynamic characteristics are discussed at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choi JH (2006) Int Rev Phys Chem 25:613 (references therein)

    Google Scholar 

  2. Donalson DJ, Okuda IV, Sloan J (1995) J Chem Phys 193:37

    Article  Google Scholar 

  3. Min Z, Quandt RW, Wong TH, Bersohn R (1999) J Chem Phys 111:7369

    Article  CAS  Google Scholar 

  4. Lindner J, Loomis RA, Klaassen JJ, Leone SR (1998) J Chem Phys 108:1944

    Article  CAS  Google Scholar 

  5. Reid JP, Marcy TP, Kuehn S, Leone SP (2000) J Chem Phys 113:4572

    Article  CAS  Google Scholar 

  6. Slagle IR, Sarzynski D, Gutman D, Miller JA, Melius CF (1988) J Chem Soc Faraday Trans II 84:491

    Google Scholar 

  7. Hoyermann K, Olzmann M, Seeba J, Viskolcz B (1999) J Phys Chem A 103:5692

    Article  CAS  Google Scholar 

  8. Hack W, Hoyermann K, Olzmann M, Zeuch T (2002) Proc Combust Inst 29:1247

    Article  CAS  Google Scholar 

  9. Kwon HC, Park JH, Lee H, Kim HK, Choi YS, Choi JH (2002) J Chem Phys 116:2675

    Article  CAS  Google Scholar 

  10. Park JH, Lee H, Kwon HC, Kim HK, Choi YS, Choi JH (2002) J Chem Phys 117:2017

    Article  CAS  Google Scholar 

  11. Lee H, Joo SK, Kwon LK, Choi JH (2003) J Chem Phys 119:9337

    Article  CAS  Google Scholar 

  12. Lee H, Joo SK, Kwon LK, Choi JH (2004) J Chem Phys 120:2215

    Article  CAS  Google Scholar 

  13. Joo SK, Kwon LK, Lee H, Choi JH (2004) J Chem Phys 120:7976

    Article  CAS  Google Scholar 

  14. Nam MJ, Youn SE, Li L, Choi JH (2005) J Chem Phys 123:211105

    Article  Google Scholar 

  15. Nam MJ, Youn SE, Choi JH (2006) J Chem Phys 124:104307

    Article  Google Scholar 

  16. Kwon LK, Nam MJ, Youn SE, Joo SK, Lee H, Choi JH (2006) J Chem Phys 124:204320

    Article  Google Scholar 

  17. Youn SE, Ok YH, Choi JH (2008) Chem phys chem 9:1099

    CAS  Google Scholar 

  18. Park YP, Kang KW, Jung SH, Choi JH (2010) J Phys Chem A 114:4891

    Article  CAS  Google Scholar 

  19. Park YP, Kang KW, Jung SH, Choi JH (2010) Phys Chem Chem Phys 12:7098

    Article  CAS  Google Scholar 

  20. Kohn DW, Clauberg H, Chen P (1992) Rev Sci Instrum 63:4003

    Article  CAS  Google Scholar 

  21. Sweeney GM, McKendrick KG (1997) J Chem Phys 106:9182

    Article  CAS  Google Scholar 

  22. Sweeney GM, Watson A, McKendrick KG (1997) J Chem Phys 106:9172

    Article  CAS  Google Scholar 

  23. Kleimermanns K, Luntz AC (1982) J Chem Phys 77:3533

    Article  Google Scholar 

  24. Andresen P, Luntz AC (1980) J Chem Phys 72:5842

    Article  CAS  Google Scholar 

  25. Knyazev VD (2001) J Phys Chem A 106:8741

    Article  Google Scholar 

  26. Marcy TP, Diaz RR, Heard D, Leone SR, Harding LB, Klippenstein SJ (2001) J Phys Chem A 105:8361

    Article  CAS  Google Scholar 

  27. Yagi K, Takayanagi T, Taketsugu T, Hirao K (2004) J Chem Phys 120:10395

    Article  CAS  Google Scholar 

  28. Harding LB, Klippenstein SJ, Georgievskii Y (2005) Proc Combust Inst 30:985

    Article  Google Scholar 

  29. Gupta A, Singh RP, Singh VB, Mishra BK, Sathyamuryhy N (2007) J Chem Sci 119:457

    Article  CAS  Google Scholar 

  30. Yong Y, Weijun Z, Xiaoming G, Shixin P, Jie S, Wei H, Jun Q (2005) Chin J Chem Phys 18:515

    CAS  Google Scholar 

  31. Nam MJ, Youn SE, Choi JH (2006) ChemPhysChem 7:2526

    Article  Google Scholar 

  32. Park JH, Lee H, Choi JH (2003) J Chem Phys 119:8966

    Article  CAS  Google Scholar 

  33. Lee H, Nam MJ, Choi JH (2006) J Chem Phys 124:044311

    Article  Google Scholar 

  34. Baulch DL, Bowman CT, Cobos CJ, Cox RA, Just Th, Kerr JA, Pilling MJ, Stocker D, Troe J, Tsang W, Walker RW, Warnatz J (2005) J Phys Chem Ref Data 34:757

    Article  CAS  Google Scholar 

  35. Petersson GA, Al-Laham MA (1991) J Chem Phys 94:6081

    Article  CAS  Google Scholar 

  36. Petersson GA, Tensfeldt TG, Montgomery JA Jr (1991) J Chem Phys 94:6091

    Article  CAS  Google Scholar 

  37. Montgomery JA Jr, Ochtersk JW, Petersson GA (1994) J Chem Phys 101:5900

    Article  CAS  Google Scholar 

  38. Baker J, Muir M, Andzelm J (1995) J Chem Phys 102:2063

    Article  CAS  Google Scholar 

  39. Ochterski JW, Petersson GA, Montgomery JA Jr (1996) J Chem Phys 104:2598

    Article  CAS  Google Scholar 

  40. Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822

    Article  CAS  Google Scholar 

  41. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03, revision B 01. Gaussian, Inc., Pittsburgh

    Google Scholar 

  43. Zhu RS, Park J, Lin MC (2005) Chem Phys Lett 408:25

    Article  CAS  Google Scholar 

  44. Senosiain JP, Klippenstein SJ, Miller JA (2006) J Phys Chem A 110:6960

    Article  CAS  Google Scholar 

  45. Xu ZF, Xu K, Lin MC (2009) ChemPhysChem 10:972

    Article  CAS  Google Scholar 

  46. Liu GX, Ding YH, Li ZS, Fu Q, Huang XR, Sun CC, Tang AC (2002) Phys Chem Chem Phys 4:1021

    Article  CAS  Google Scholar 

  47. Hammond GS (1955) J Am Chem Soc 77:334

    Google Scholar 

  48. Steinfeld JI, Francisco JS, Hase WL (1999) Chemical kinetics and dynamics. Prentice Hall, New Jersey

  49. Baer T, Hase WL (1996) Unimolecular reaction dynamics. Oxford University, New York

Download references

Acknowledgments

This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (2010-0014418) and Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF20100020209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Ho Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, SH., Park, YP., Kang, KW. et al. A computational study of the radical–radical reaction of O(3P) + C2H5 with comparisons to gas-phase kinetics and crossed-beam experiments. Theor Chem Acc 129, 105–118 (2011). https://doi.org/10.1007/s00214-011-0903-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-011-0903-2

Keywords

Navigation