Theoretical Chemistry Accounts

, Volume 129, Issue 3–5, pp 453–466 | Cite as

Calculation of molecular g-tensors using the zeroth-order regular approximation and density functional theory: expectation value versus linear response approaches

  • Jochen AutschbachEmail author
  • Benjamin Pritchard
Regular Article


Density functional theory (DFT) calculations of molecular g-tensors were implemented as a second derivative property within the two-component relativistic zeroth-order regular approximation (ZORA). g-tensors were computed for systems ranging from light atomic radicals to molecules with heavy d and f block elements. For comparison, computations were also performed with a ZORA first-order derivative approach and with a second derivative method based on the Pauli Hamiltonian. In each set of computations, Slater-type basis sets have been used. The new ZORA implementation allows for non-hybrid and hybrid DFT calculations. A comparison of the PBE non-hybrid and the PBE0 hybrid functional yielded mixed results for our test set. For the lanthanide complex \([\hbox{Ce}(\hbox{DPA})_3]^{3-}\) (DPA = pyridine-2,6-dicarboxylate), calculations of the g-tensor were used to estimate paramagnetic NMR pseudocontact shifts for protons and carbon atoms in the ligands. The results are in reasonable agreement with experimental data.


Electron paramagnetic resonance Density functional theory Relativistic effects Paramagnetic NMR 



This work has received financial support from the US Department of Energy, grant no. DE-SC0001136 (BES Heavy Element Chemistry Program). We thank the Center for Computational Research (CCR) at the University at Buffalo for their continued support of our research projects. JA thanks Dr. Serguei Patchkovskii for stimulating discussions.


  1. 1.
    Pyykkö P (1988) Chem Rev 88:563CrossRefGoogle Scholar
  2. 2.
    Rieger PH (2007) Electron spin resonance. Analysis and interpretation. The Royal Society of Chemistry, CambridgeGoogle Scholar
  3. 3.
    Abragam A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Clarendon Press, OxfordGoogle Scholar
  4. 4.
    Harriman JE (1978) Theoretical foundations of electron spin resonance. Academic Press, New YorkGoogle Scholar
  5. 5.
    Moon S, Patchkovskii S (2004) In: Kaupp M, Bühl M, Malkin VG (eds) Calculation of NMR and EPR parameters. Theory and applications. Wiley-VCH, Weinheim, pp 325–338Google Scholar
  6. 6.
    Kaupp M, Köhler FH (2009) Coord Chem Rev 253:2376CrossRefGoogle Scholar
  7. 7.
    Bertini I, Turano P, Vila AJ (1993) Chem Rev 93:2833CrossRefGoogle Scholar
  8. 8.
    Rastrelli F, Bagno A (2009) Chem Eur J 15:7990CrossRefGoogle Scholar
  9. 9.
    Jayatilaka D (1998) J Chem Phys 108:7587CrossRefGoogle Scholar
  10. 10.
    Bolvin H (2006) Chem Phys Chem 7:1575Google Scholar
  11. 11.
    Autschbach J, Ziegler T (2003) Coord Chem Rev 238/239:83CrossRefGoogle Scholar
  12. 12.
    Neese F (2001) J Chem Phys 115:11080CrossRefGoogle Scholar
  13. 13.
    Lushington GH, Grein F (1996) Theor Chim Acta 93:259Google Scholar
  14. 14.
    Lushington GH, Grein F (1997) Int J Quantum Chem 106:3292Google Scholar
  15. 15.
    Lushington GH (2000) J Phys Chem A 104:2969CrossRefGoogle Scholar
  16. 16.
    Moores WH, McWeeny R (1973) Proc R Soc Lond A 332:365CrossRefGoogle Scholar
  17. 17.
    Ishii M, Morihashi K, Kikuchi O (1991) J Mol Struct (Theochem) 325:99Google Scholar
  18. 18.
    Vahtras O, Minaev B, Ågren H (1997) Chem Phys Lett 281:186CrossRefGoogle Scholar
  19. 19.
    Kaupp M (2002) In: Lund A, Shiotani M (eds) EPR spectroscopy of free radicals in solids. Trends in methods and applications. Kluwer, DordrechtGoogle Scholar
  20. 20.
    Patchkovskii S, Schreckenbach G (2004) In: Kaupp M, Bühl M, Malkin VG (eds) Calculation of NMR and EPR parameters. Theory and applications. Wiley-VCH, Weinheim, pp 505–532Google Scholar
  21. 21.
    Neese F (2009) Coord Chem Rev 253:526CrossRefGoogle Scholar
  22. 22.
    Autschbach J (2010) In: Ishikawa J, Barysz M (eds) Relativistic methods for chemists. Challenges and advances in computational chemistry and physics, vol 10, chap 12. Springer, London, pp 521–598Google Scholar
  23. 23.
    Schreckenbach G, Ziegler T (1997) J Phys Chem A 101:3388CrossRefGoogle Scholar
  24. 24.
    Patchkovskii S, Ziegler T (1999) J Chem Phys 111:5730CrossRefGoogle Scholar
  25. 25.
    Malkina OL, Vaara J, Scimmelpfennig B, Munzarová M, Malkin VG, Kaupp M (2000) J Am Chem Soc 122:9206CrossRefGoogle Scholar
  26. 26.
    Kaupp M, Reviakine R, Malkina OL, Arbuznikov A, Schimmelpfennig B, Malkin VG (2002) J Comput Chem 23:794CrossRefGoogle Scholar
  27. 27.
    Hrobárik P, Malkina OL, Malkin VG, Kaupp M (2009) Chem Phys 356:229CrossRefGoogle Scholar
  28. 28.
    van Lenthe E, Wormer PES, van der Avoird A (1997) J Chem Phys 107:2488CrossRefGoogle Scholar
  29. 29.
    Belanzoni P, van Lenthe E, Baerends EJ (2001) J Chem Phys 114:4421CrossRefGoogle Scholar
  30. 30.
    Malkin I, Malkina OL, Malkin VG, Kaupp M (2005) J Chem Phys 123:244103CrossRefGoogle Scholar
  31. 31.
    Komorovský S, Repiský M, Malkina OL, Malkin VG, Malkin I, Kaupp M (2006) J Chem Phys 124:084108CrossRefGoogle Scholar
  32. 32.
    Repiský M, Komorovský S, Malkin E, Malkina OL, Malkin VG (2010) Chem Phys Lett 488:94CrossRefGoogle Scholar
  33. 33.
    Chibotaru LF, Ceulemans A, Bolvin H (2008) Phys Rev Lett 101:033003CrossRefGoogle Scholar
  34. 34.
    Notter FP, Bolvin H (2009) J Chem Phys 130:184310CrossRefGoogle Scholar
  35. 35.
    Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, van Faassen M, Fan L, Fischer TH, Fonseca Guerra C, Ghysels A, Giammona A, van Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kaminski JW, van Kessel G, Kootstra F, Kovalenko A, Krykunov MV, van Lenthe E, McCormack DA, Michalak A, Mitoraj M, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodríguez JI, Ros P, Schipper PRT, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL. Amsterdam density functional, SCM, theoretical chemistry. Vrije Universiteit, Amsterdam.
  36. 36.
    London F (1937) J Phys Radium 8:397CrossRefGoogle Scholar
  37. 37.
    Ditchfield R (1974) Mol Phys 27:789CrossRefGoogle Scholar
  38. 38.
    Krykunov M, Ziegler T, van Lenthe E (2009) J Phys Chem A 113:11495CrossRefGoogle Scholar
  39. 39.
    van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597CrossRefGoogle Scholar
  40. 40.
    Philipsen PHT, van Lenthe E, Snijders JG, Baerends EJ (1997) Phys Rev B 56:13556CrossRefGoogle Scholar
  41. 41.
    Nichols P, Govind N, Bylaska EJ, de Jong WA (2009) J Chem Theor Comput 5:491CrossRefGoogle Scholar
  42. 42.
    Aquino F, Govind N, Autschbach J (2010) J Chem Theor Comput 6:2669CrossRefGoogle Scholar
  43. 43.
    van Wüllen C (1998) J Chem Phys 109:392CrossRefGoogle Scholar
  44. 44.
    Autschbach J, Ziegler T (2000) J Chem Phys 113:936CrossRefGoogle Scholar
  45. 45.
    Autschbach J, Ziegler T (2000) J Chem Phys 113:9410CrossRefGoogle Scholar
  46. 46.
    Wolff SK, Ziegler T, van Lenthe E, Baerends EJ (1999) J Chem Phys 110:7689CrossRefGoogle Scholar
  47. 47.
    van Lenthe E, van der Avoird A, Wormer PES (1998) J Chem Phys 108:4783CrossRefGoogle Scholar
  48. 48.
    Okada S, Shinada M, Matsuoka O (1990) J Chem Phys 93:5013CrossRefGoogle Scholar
  49. 49.
    Ishikawa Y, Nakajima T, Hada M, Nakatsuji H (1998) Chem Phys Lett 283:119CrossRefGoogle Scholar
  50. 50.
    Vaara J, Ruud K, Vahtras O, Ågren H, Jokisaari J (1998) J Chem Phys 109:1212CrossRefGoogle Scholar
  51. 51.
    Patchkovskii S, Strong RT, Pickard CJ, Un S (2005) J Chem Phys 122:214101CrossRefGoogle Scholar
  52. 52.
    Krykunov M, Autschbach J (2005) J Chem Phys 123:114103CrossRefGoogle Scholar
  53. 53.
    Schreckenbach G, Ziegler T (1997) Int J Quantum Chem 61:899CrossRefGoogle Scholar
  54. 54.
    Schreckenbach G, Ziegler T (1998) Theor Chem Acc 99:71Google Scholar
  55. 55.
    Wolff SK, Ziegler T (1998) J Chem Phys 109:895CrossRefGoogle Scholar
  56. 56.
    Autschbach J (2008) J Chem Phys 128:164112CrossRefGoogle Scholar
  57. 57.
    Fukui H (1987) Magn Res Rev 11:205Google Scholar
  58. 58.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  59. 59.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  60. 60.
    Perdew JP (1986) Phys Rev B 34:7406CrossRefGoogle Scholar
  61. 61.
    Ahlrichs R, Furche F, Grimme S (2000) Chem Phys Lett 325:317CrossRefGoogle Scholar
  62. 62.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  63. 63.
    Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029CrossRefGoogle Scholar
  64. 64.
    Adamo C, Barone V (1999) J Chem Phys 110:6158CrossRefGoogle Scholar
  65. 65.
    Hutchison CA Jr, Weinstock B (1960) J Chem Phys 32:56CrossRefGoogle Scholar
  66. 66.
    Masson JP, Desmoulin JP, Charpin P, Bougon R (1976) Inorg Chem 15:2529CrossRefGoogle Scholar
  67. 67.
    Selbin J, Ortego JD, Gritzner G (1968) Inorg Chem 7:976CrossRefGoogle Scholar
  68. 68.
    Jen CK, Foner SN, Cochran EL, Bowers VA (1958) Phys Rev 112:1169CrossRefGoogle Scholar
  69. 69.
    Grein F (2004) Chem Phys 296:71CrossRefGoogle Scholar
  70. 70.
    Holmberg RW (1969) J Chem Phys 51:3255CrossRefGoogle Scholar
  71. 71.
    Zee RJV, Ferrante RF, Weltner W Jr (1985) J Chem Phys 83:6181CrossRefGoogle Scholar
  72. 72.
    Knight LB Jr, Weltner W Jr (1971) J Chem Phys 55:2061CrossRefGoogle Scholar
  73. 73.
    Knight LB Jr, Fisher TA, Wise MB (1981) J Chems Phys 74:6009CrossRefGoogle Scholar
  74. 74.
    Case DA (1985) J Chem Phys 83:5792CrossRefGoogle Scholar
  75. 75.
    De Vore TC, Weltner W (1977) J Am Chem Soc 99:4700CrossRefGoogle Scholar
  76. 76.
    Harris RK, Becker ED, Cabral De Menezes SM, Granger P, Hoffman RE, Zilm KW (2008) Pure Appl Chem 80:59CrossRefGoogle Scholar
  77. 77.
    Kim J, Ihee H, Lee YS (2010) J Chem Phys 133:144309CrossRefGoogle Scholar
  78. 78.
    Desreux JF, Reilley CN (1976) J Am Chem Soc 98:2105CrossRefGoogle Scholar
  79. 79.
    Golding RM, Pyykkö P (1973) Mol Phys 26:1389CrossRefGoogle Scholar
  80. 80.
    Bertini I, Luchinat C, Parigi G (2002) Prog Nucl Mag Res Sp 40:249CrossRefGoogle Scholar
  81. 81.
    Ouali N, Bocquet B, Rigault S, Morgantini PY, Weber J, Piguet C (2002) Inorg Chem 41:1436CrossRefGoogle Scholar
  82. 82.
    Klamt A, Schüürmann G (1993) J Chem Soc Perkin Trans 2:799Google Scholar
  83. 83.
    Pye CC, Ziegler T (1999) Theor Chem Acc 101:396Google Scholar
  84. 84.
    Hrobárik P, Reviakine R, Arbuznikov AV, Malkina OL, Malkin VG, Köhler FH, Kaupp M (2007) J Chem Phys 126:024107CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of ChemistryState University of New York at BuffaloBuffaloUSA

Personalised recommendations