Skip to main content
Log in

(Hyper)polarizability density analysis for open-shell molecular systems based on natural orbitals and occupation numbers

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

An Erratum to this article was published on 02 November 2011

Abstract

We have developed a method for analyzing the (hyper)polarizabilities of open-shell molecular systems. This method employs the (hyper)polarizability densities based on the natural orbitals and occupation numbers, which enables us to analyze the contributions of odd electrons having various open-shell (diradical) characters. Within broken-symmetry, i.e., spin-unrestricted, single-determinant molecular orbital and density functional theory approaches, we can also remove the spin contamination effects on these quantities through spin projection. To do that, an approximate spin projected method has been elaborated and applied to the analysis of the (hyper)polarizability of multi-radical systems. As examples, typical open-shell singlet systems, 1,3-dipoles and rectangular graphene nanoflakes, are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Salem L, Rowland C (1972) Angew Chem Int Ed 11:92

    Article  CAS  Google Scholar 

  2. Borden WT (ed) (1982) Diradicals. Wiley-Interscience, New York

    Google Scholar 

  3. Rajca A (1994) Chem Rev 94:871

    Article  CAS  Google Scholar 

  4. Klessinger M, Michl J (1995) Excited states and photo-chemistry of organic molecules, revised and improved english-language edition. Wiley-VCH, New York

    Google Scholar 

  5. Borden WT, Davidson ER (1977) J Am Chem Soc 99:4587

    Article  CAS  Google Scholar 

  6. Adam W, Borden WT, Burda C, Foster H, Heidenfelder T, Heubes M, Hrovat DA, Kita F, Lewis SB, Scheutzow D, Wirz J (1998) J Am Cem Soc 120:593

    Article  CAS  Google Scholar 

  7. Staroverov VN, Davidson ER (2000) J Am Chem Soc 122:186

    Article  CAS  Google Scholar 

  8. Abe M, Adam W, Hara M, Hattori M, Majima T, Nojima M, Tachibana K, Tojo S (2002) J Am Chem Soc 124:6540

    Article  CAS  Google Scholar 

  9. Jung Y, Head-Gordon M (2003) Chem Phys Chem 4:522

    Article  CAS  Google Scholar 

  10. Scheschkewitz D, Amii H, Gomitzka H, Schoeller WW, Bourissou D, Bertrand G (2002) Science 295:1880

    Article  CAS  Google Scholar 

  11. Cui C, Brynda M, Olmstead MM, Power PP (2004) J Am Chem Soc 126:6510

    Article  CAS  Google Scholar 

  12. Paci I, Johnson JC, Chen X, Rana G, Popovic D, David DE, Nozik AJ, Ratner MA, Michl J (2006) J Am Chem Soc 128:16546

    Article  CAS  Google Scholar 

  13. Suaud N, Bonnet ML, Boilleau C, Labéguerie P, Guihéry N (2009) J Am Chem Soc 131:715

    Article  CAS  Google Scholar 

  14. Houk KN, Lee PS, Nendel M (2001) J Org Chem 66:5517

    Article  CAS  Google Scholar 

  15. Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) J Am Chem Soc 126:7416

    Article  CAS  Google Scholar 

  16. Chen Z, Jiang D, Lu X, Bettinger HF, Dai S, PvR Schleyer, Houk KN (2007) Org Lett 9:5449

    Article  CAS  Google Scholar 

  17. Hachmann J, Dorando JJ, Avilés M, Chan GK-L (2007) J Chem Phys 127:134309

    Article  CAS  Google Scholar 

  18. Jiang D, Dai S (2008) J Phys Chem A 112:332

    Article  CAS  Google Scholar 

  19. Tönshoff C, Bettinger HF (2010) Angew Chem Int Ed 49:4125. doi:10.1002/anie.200906355

    Google Scholar 

  20. Nagai H, Nakano M, Yoneda K, Kishi R, Takahashi H, Shimizu A, Kubo T, Kamada K, Ohta K, Botek E, Chanpagne B (2010) Chem Phys Lett 489:212

    Article  CAS  Google Scholar 

  21. Trinquier G, Suaud, N, Malrieu JP (2010) Chem Eur J 16:8762

    Google Scholar 

  22. Wang WL, Meng S, Kaxiras E (2008) Nano Lett 8:241

    Article  CAS  Google Scholar 

  23. Yazyev OV, Wang WL, Meng S, Kaxiras E (2008) Nano Lett 8:766

    Article  CAS  Google Scholar 

  24. Ezawa M (2007) Phys Rev B 76:245415

    Article  CAS  Google Scholar 

  25. Vandeschuren M, Hermet P, Meunier V, Henrard L, Lambin Ph (2008) Phys Rev B 78:195401

    Article  CAS  Google Scholar 

  26. F-Rossier J, Palacios JJ (2007) Phys Rev Lett 99:177204

    Article  CAS  Google Scholar 

  27. Dias JR (2008) Chem Phys Lett 467:200

    Article  CAS  Google Scholar 

  28. Son Y-W, Cohen ML, Louie SG (2006) Nature 444:347

    Article  CAS  Google Scholar 

  29. Kubo T, Shimizu A, Sakamoto M, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Morita Y, Nakasuji K (2005) Angew Chem Int Ed 44:6564

    Article  CAS  Google Scholar 

  30. Konishi A, Hirao Y, Nakano M, Shimizu A, Botek E, Champagne B, Shiomi D, Sato K, Takui T, Matsumoto K, Kurata H, Kubo T (2010) J Am Chem Soc 132:11021

    Article  CAS  Google Scholar 

  31. Lahti PM, Ichimura AS, Sanborn JA (2001) J Phys Chem A 105:251

    Article  CAS  Google Scholar 

  32. Serwinski PR, Lahti PM (2003) Org Lett 5:2099

    Article  CAS  Google Scholar 

  33. Ito A, Urabe M, Tanaka K (2007) Angew Chem Int Ed 46:3300

    Article  CAS  Google Scholar 

  34. Matsuda K, Irie M (2001) Chem Eur J 7:3466

    Article  CAS  Google Scholar 

  35. Rajca A, Shiraishi K, Pink M, Rajca S (2007) J Am Chem Soc 129:7232

    Article  CAS  Google Scholar 

  36. Rajca A, Vale M, Rajca S (2008) J Am Chem Soc 130:9099

    Article  CAS  Google Scholar 

  37. Train C, Norel L, Baumgarten M (2009) Coord Chem Rev 253:2342

    Article  CAS  Google Scholar 

  38. Shimizu A, Uruichi M, Yakushi K, Matsuzaki H, Okamoto H, Nakano M, Hirao Y, Matsumoto K, Kurata H, Kubo T (2009) Angew Chem Int Ed 48:5482

    Article  CAS  Google Scholar 

  39. Huang J, Kertesz M (2007) J Am Chem Soc 129:1634

    Article  CAS  Google Scholar 

  40. Tian YH, Kertesz M (2010) J Am Chem Soc 132:10648

    Article  CAS  Google Scholar 

  41. Yamaguchi K (1990) In: Carbo R, Klobukowski M (eds) Self-consistent field: theory and applications. Elsevier, Amsterdam, p 727

    Google Scholar 

  42. Nakano M, Kishi R, Nitta T, Kubo T, Nakasuji K, Kamada K, Ohta K, Champagne B, Botek E, Yamaguchi K (2005) J Phys Chem A 109:885

    Article  CAS  Google Scholar 

  43. Nakano M, Kishi R, Ohta S, Takebe A, Takahashi H, Furukawa S, Kubo T, Morita Y, Nakasuji K, Yamaguchi K, Kamada K, Ohta K, Champagne B, Botek E (2006) J Chem Phys 125:74113

    Article  CAS  Google Scholar 

  44. Nakano M, Kishi R, Ohta S, Takahashi H, Kubo T, Kamada K, Ohta K, Botek E, Champagne B (2007) Phys Rev Lett 99:033001

    Article  CAS  Google Scholar 

  45. Nakano M, Kubo T, Kamada K, Ohta K, Kishi R, Ohta S, Nakagawa N, Takahashi H, Furukawa S, Morita Y, Nakasuji K (2006) Chem Phys Lett 418:142

    Article  CAS  Google Scholar 

  46. Ohta S, Nakano M, Kubo T, Morita Y, Nakasuji K, Ohta S, Nakano M, Kubo T, Kamada K, Ohta K, Kishi R, Nakagawa N, Champagne B, Botek E, Takebe A, Umezaki S, Nate M, Takahashi H, Furukawa S, Morita Y, Nakasuji K, Yamaguchi K (2007) J Phys Chem A 111:3633

    Article  CAS  Google Scholar 

  47. Fukui H, Kishi R, Minami T, Nagai H, Takahashi H, Kubo T, Kamada K, Ohta K, Champagne B, Botek B, Nakano M (2008) J Phys Chem A 112:8423

    Article  CAS  Google Scholar 

  48. Serrano-Andrés L, Avramopoulos A, Li J, Labéguerie P, Bégué D, Kellö V, Papadopoulos MG (2009) J Chem Phys 131:134312

    Article  CAS  Google Scholar 

  49. Nakano M, Nagai H, Fukui H, Yoneda K, Kishi R, Takahashi T, Shimizu A, Kubo T, Kamada K, Ohta K, Champagne B, Botek B (2008) Chem Phys Lett 467:120

    Article  CAS  Google Scholar 

  50. Kamada K, Ohta K, Kubo T, Shimizu A, Morita Y, Nakasuji K, Kishi R, Ohta S, Furukawa S, Takahashi H, Botek E, Champagne B, Nakano M (2007) Angew Chem Int Ed 46:3544

    Article  CAS  Google Scholar 

  51. Nakano M, Yoneda K, Kishi R, Takahashi T, Kubo T, Kamada K, Ohta K, Botek E, Champagne B (2009) J Chem Phys 131:114316

    Article  CAS  Google Scholar 

  52. Nakano M, Shigemoto I, Yamada S, Yamaguchi K (1995) J Chem Phys 103:4175

    Article  CAS  Google Scholar 

  53. Jha PC, Rinkevicius Z, Ågren H (2009) ChemPhysChem 10:817

    Article  CAS  Google Scholar 

  54. Li ZJ, Wang FF, Li ZR, Xu HL, Huang XR, Wu D, Chen W, Yu GT, Gu FL, Aoki Y (2009) Phys Chem Chem Phys 11:402

    Article  CAS  Google Scholar 

  55. Takatsuka K, Fueno T, Yamaguchi K (1978) Theor Chim Acta 48:175

    Article  CAS  Google Scholar 

  56. Staroverov VN, Davidson E (2000) Chem Phys Lett 330:161

    Article  CAS  Google Scholar 

  57. Head-Gordon M (2003) Chem Phys Lett 372:508

    Article  CAS  Google Scholar 

  58. Yamanaka S, Okumura M, Nakano M, Yamaguchi K (1994) J Mol Structure (Theochem) 310:205

    Article  Google Scholar 

  59. Kitagawa Y, Saito T, Nakanishi Y, Kataoka Y, Matsui T, Kawakami T, Okumura M, Yamaguchi K (2009) J Phys Chem A 113:15041

    Article  CAS  Google Scholar 

  60. Yamaguchi K (1975) Chem Phys Lett 33:330

    Article  CAS  Google Scholar 

  61. Kishi R, Bonness S, Yoneda K, Takahashi H, Nakano M, Botek E, Champagne B, Kubo T, Kamada K, Ohta K, Tsuneda T (2010) J Chem Phys 132:094107

    Article  CAS  Google Scholar 

  62. Stoll H, Savin A (1985) In: Dreizler R, da Providencia J (eds) Density Functional Methods in Physics, Plenum, New York, p 177

    Google Scholar 

  63. Leininger T, Stoll H, Werner H-J, Savin A (1997) Chem Phys Lett 275:151

    Article  CAS  Google Scholar 

  64. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540

    Article  CAS  Google Scholar 

  65. Tawada Y, Tsuneda T, Yanigasawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425

    Article  CAS  Google Scholar 

  66. Hunt KLC (1984) J Chem Phys 80:393

    Article  CAS  Google Scholar 

  67. Hunt KLC (1995) J Chem Phys 103:3552

    Article  CAS  Google Scholar 

  68. Tisko EL, Li X, Hunt KLC (1995) J Chem Phys 103:6873

    Article  CAS  Google Scholar 

  69. Geskin VM, Brédas JL (1998) J Chem Phys 109:6163

    Article  CAS  Google Scholar 

  70. Leclercq A, Zojer E, Jang SH, Barlow S, Geskin V, Jen AKY, Marder SR, Brédas JL (2006) J Chem Phys 124:044510

    Google Scholar 

  71. Ye A, Autschbach J (2006) J Chem Phys 124:234101

    Article  CAS  Google Scholar 

  72. Krylov AI (2001) Chem Phys Lett 338:375

    Article  CAS  Google Scholar 

  73. Krylov AI (2001) Chem Phys Lett 350:522

    Article  CAS  Google Scholar 

  74. Sekino H, Bartlett RJ (1993) J Chem Phys 98:3022

    Article  CAS  Google Scholar 

  75. Nakano M, Kishi R, Nakagawa N, Ohta S, Takahashi H, Furukawa S, Kamada K, Ohta K, Champagne B, Botek E, Yamada S, Yamaguchi K (2006) J Phys. Chem A 110:4238

    Article  CAS  Google Scholar 

  76. Champagne B, Botek B, Nakano M, Nitta T, Yamaguchi K (2005) J Chem Phys 122:114315

    Article  CAS  Google Scholar 

  77. Champagne B, Perpète EA, van Gisbergen SJA, Baerends EJ, Soubra-Ghaoui C, Robins KA, Kirtman B (1998) J Chem Phys 109:10489 Erratum (1999) 110:11664

    Article  CAS  Google Scholar 

  78. Champagne B, Perpète EA, Jacquemin D, van Gisbergen SJA, Baerends EJ, Soubra-Ghaoui C (2000) J Phys Chem A 104:4755

    Article  CAS  Google Scholar 

  79. van Gisbergen SJA, Schipper PRT, Gritsenko OV, Baerends EJ, Snijders JG, Champagne B, Kirtman B (1999) Phys Rev Lett 83:694

    Article  Google Scholar 

  80. Kummel S, Kronik L, Perdew JP (2004) Phys Rev Lett 93:213002

    Article  CAS  Google Scholar 

  81. Mori-Sanchez P, Wu Q, Yang W (2003) J Chem Phys 119:11031

    Article  CAS  Google Scholar 

  82. Sekino H, Maeda Y, Kamiya M, Hirao K (2007) J Chem Phys 126:014107

    Article  CAS  Google Scholar 

  83. Kirtman B, Bonness S, Ramirez-Solis A, Champagne B, Matsumoto H, Sekino H (2008) J Chem Phys 128:114108

    Article  CAS  Google Scholar 

  84. Bonness S, Fukui H, Yoneda K, Kishi R, Champagne B, Botek E, Nakano M (2010) Chem Phys Lett 493:195

    Article  CAS  Google Scholar 

  85. Nakano M, Takebe A, Kishi R, Ohta S, Nate M, Kubo T, Kamada K, Ohta K, Champagne B, Botek E, Takahashi H, Furukawa S, Morita S, Nakasuji K (2006) Chem Phys Lett 432:473

    Article  CAS  Google Scholar 

  86. Song J-W, Hirosawa T, Tsuneda T, Hirao K (2007) J Chem Phys 126:154105

    Article  CAS  Google Scholar 

  87. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CT

    Google Scholar 

  88. Filatov M, Cremer D (2005) J Chem Phys 123:124101

    Article  CAS  Google Scholar 

  89. Nakano M, Yamada S, Shigemoto I, Yamaguchi K (1996) Chem Phys Lett 250:247

    Article  CAS  Google Scholar 

  90. Nakano M, Yamaguchi K (1994) Phys Rev A 50:2989

    Article  CAS  Google Scholar 

  91. Nakano M, Yamaguchi K, Matsuzaki Y, Tanaka K, Yamabe T (1995) J Chem Phys 102:2986

    Article  CAS  Google Scholar 

  92. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51

    Article  CAS  Google Scholar 

  93. Savin A, Flad HJ (1995) Int J Quantum Chem 56:327

    Article  CAS  Google Scholar 

  94. Gori-Giorgi P, Savin A (2006) Phys Rev A 73:3250

    Article  CAS  Google Scholar 

  95. Fromager E, Toulouse J, Jensen HJA (2007) J Chem Phys 126:074111

    Article  CAS  Google Scholar 

  96. Kusakabe K (2001) J Phys Soc Jpn 70:2038

    Article  CAS  Google Scholar 

  97. Yamanaka S, Nakata K, Takada T, Kusakabe K, Ugalde JM, Yamaguchi K (2006) Chem Lett 35:242

    Article  CAS  Google Scholar 

  98. Yamanaka S, Nakata K, Ukai T, Takada T, Yamaguchi K (2006) Int J Quantum Chem 16:3312

    Article  CAS  Google Scholar 

  99. Miehlich B, Stoll H, Savin A (1997) Mol Phys 91:527

    CAS  Google Scholar 

  100. Gräfenstein J, Cremer D (2000) Chem Phys Lett 316:569

    Article  Google Scholar 

  101. Gusarov S, Malmqvist PÅ, Lindh R, Roos BO (2004) Theor Chem Acc 112:84

    Article  CAS  Google Scholar 

  102. Pérez-Jiménez AJ, Pérez-Jord JM (2007) Phys Rev A 75:012503

    Article  CAS  Google Scholar 

  103. Takeda R, Yamanaka S, Yamaguchi K (2002) Chem Phys Lett 366:321

    Article  CAS  Google Scholar 

  104. Takeda R, Yamanaka S, Yamaguchi K (2004) Int J Quantum Chem 96:463

    Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research (Nos. 21350011 and 20655003) and “Japan-Belgium Cooperative Program” (J091102006) from Japan Society for the Promotion of Science (JSPS), and the global COE (center of excellence) program “Global Education and Research Center for Bio-Environmental Chemistry” of Osaka University. Theoretical calculations were partly performed using Research Center for Computational Science, Okazaki, Japan. E.B. thanks the Interuniversity Attraction Pole on “Functional Supramolecular Systems” (IUAP No. P6-27) for her postdoctoral grant. This work has also been supported by the Academy Louvain (ARC “Extended-π-Conjugated Molecular Tinkertoys for Optoelectronics, and Spintronics”) and by the Belgian Government (IUAP No P06-27 “Functional Supramolecular Systems”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Nakano.

Additional information

Dedicated to Professor Akira Imamura on the occasion of his 77th birthday and published as part of the Imamura Festschrift Issue.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00214-011-1064-z

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakano, M., Fukui, H., Minami, T. et al. (Hyper)polarizability density analysis for open-shell molecular systems based on natural orbitals and occupation numbers. Theor Chem Acc 130, 711–724 (2011). https://doi.org/10.1007/s00214-010-0871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0871-y

Keywords

Navigation