Advertisement

Theoretical Chemistry Accounts

, Volume 129, Issue 3–5, pp 409–412 | Cite as

The nuclear quadrupole moments of 191,193,195,197Pb and 139La

  • Igor Itkin
  • Ephraim Eliav
  • Uzi KaldorEmail author
Regular Article

Abstract

The intermediate Hamiltonian coupled cluster method is applied to calculate the nuclear quadrupole moments (NQM) of Pb and La. Large, converged basis sets are used to get the electric field gradients at the relevant nuclei; these make possible the extraction of the NQM from the measured hyperfine coupling constant B. The only Pb NQM listed in Pyykkö’s 2008 table (Mol Phys 106:1965, 2008) is for the neutron-rich unstable 209 isotope (halflife 3.25 h), given as −269(165) mb. This error bound of 60%, the largest in the table, comes from the poor precision of the measured B. More precise B values are now available for the neutron-poor isotopes with atomic weights 191, 193, 195, 197 and their NQMs are calculated herein. The best values obtained for these four isotopes are, respectively, 78(11), 179(9), 281(12), and 347(15) mb. The electric field gradient at the nucleus is the same for all Pb isotopes, so that NQMs of other isotopes may be evaluated when better B values become available for them. The same method is applied to 139La, for which an accurate B value in the b 1 D 2 state has recently become available. The calculated NQM is 206(4) mb, in excellent agreement with the recent molecular value of 200(6) mb.

Keywords

Nuclear quadrupole moments Coupled cluster method Pb La 

Notes

Acknowledgments

The authors are indebted to Pekka Pyykkö for drawing their attention some years ago to the significance of calculating nuclear quadrupole moments for heavy elements.

References

  1. 1.
    Pyykkö P (2001) Mol Phys 99:1617CrossRefGoogle Scholar
  2. 2.
    Pyykkö P (2008) Mol Phys 106:1965CrossRefGoogle Scholar
  3. 3.
    Lide DR (ed) (1993) Handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  4. 4.
    Stone NJ (2005) At Data Nucl Data Tables 90:75CrossRefGoogle Scholar
  5. 5.
    Dinger U, Eberz J, Huber G et al (1987) Z Phys A 328:253Google Scholar
  6. 6.
    Dutta SR, Kirchner R, Klepper O, Kühl TU, Marx D, Sprouse GD, Menges R, Dinger U, Huber G, Schröder S (1991) Z Phys A 341:39CrossRefGoogle Scholar
  7. 7.
    Lindgren I, Rosen A (1974) Case Stud At Phys 4:93Google Scholar
  8. 8.
    Yakobi H, Eliav E, Kaldor U (2007) J Chem Phys 126:184305CrossRefGoogle Scholar
  9. 9.
    Yakobi H, Eliav E, Visscher L, Kaldor U (2007) J Chem Phys 126:054301CrossRefGoogle Scholar
  10. 10.
    Yakobi H, Eliav E, Kaldor U (2009) Can J Chem 87:802CrossRefGoogle Scholar
  11. 11.
    Höhle C, Hünermann H, Wagner H (1982) Z Phys A 304:279CrossRefGoogle Scholar
  12. 12.
    Rubinoff DS, Evans CJ, Gerry MCL (2003) J Mol Spectr 218:169CrossRefGoogle Scholar
  13. 13.
    Schef P, Björkhage M, Lundin P, Mannervik S (2006) Phys Scr 73:217CrossRefGoogle Scholar
  14. 14.
    Bauche J, Wyart JF, Ben Ahmed Z, Guidara K (1982) Z Phys A 304:285CrossRefGoogle Scholar
  15. 15.
    Jacob CR, Visscher L, Thierfelder C, Schwerdtfeger P (2007) J Chem Phys 127:204303CrossRefGoogle Scholar
  16. 16.
    Landau A, Eliav E, Kaldor U (2001) Adv Quantum Chem 39:172Google Scholar
  17. 17.
    Eliav E, Vilkas MJ, Ishikawa Y, Kaldor U (2005) J Chem Phys 122:224113CrossRefGoogle Scholar
  18. 18.
    Huzinaga S, Klobukowski M (1988) J Mol Struct (Theochem) 167:1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of ChemistryTel Aviv UniversityTel AvivIsrael

Personalised recommendations