Advertisement

Theoretical Chemistry Accounts

, Volume 129, Issue 3–5, pp 401–407 | Cite as

On the stability and lifetime of GaO2+ in the gas phase

  • Inés Corral
  • Alicia Palacios
  • Manuel YáñezEmail author
Regular Article

Abstract

The electronic structure, stability, and lifetime of GaO2+ have been investigated using high-level ab initio calculations. The potential energy curves have been calculated at the CCSD(T)/aug-cc-pV5Z and at the MS-CASPT2/ANO-RCC levels of theory. Lifetimes were evaluated using the Exterior Complex Scaling (ECS) method and B-spline basis functions. Our calculations show that GaO2+ is a metastable species in the gas phase, since the diatomic dication, in its ground state, lies 97.1 kcal/mol above the Ga+ (1S) + O+ (4S) dissociation limit. However, the energy barrier that has to be overcome to reach this limit is 3 kcal/mol high so that five vibrational resonances can be accommodated between the bottom of the well and the top of the barrier. The evaluated lifetimes vary from hundreds of femtoseconds to approximately 1 s, so at least two of them have long enough lifetimes (1 s and 91 μs) to be detected using mass spectrometry techniques, in agreement with the experimental evidence. In the experiment (Fiser et al. in Eur J Mass Spectrom 15:315–324, 2009), GaO2+ was observed for an ion flight time of about ~12 μs through a magnetic-sector mass spectrometer and unambiguously identified by its isotopic abundance. Our results also show that isotopic effects on the resonances’ energies and on their lifetimes, when 70Ga is replaced by 69Ga or 71Ga, are very small (~0.1 and ~1%, respectively), reflecting the large mass of the system.

Keywords

Doubly charged species Lifetimes Ab initio calculations Coulomb explosion GaO Gas phase 

Notes

Acknowledgments

We thank Klaus Franzreb for sending us his experimental results (ref.16) and his suggestion to calculate GaO2+. This work has been partially supported by the DGI Project No. CTQ2009-13129-C01, by the Project MADRISOLAR2, Ref.: S2009PPQ/1533 of the Comunidad Autónoma de Madrid, by Consolider on Molecular Nanoscience CSC2007-00010, and by the COST Action CM0702. IC and AP gratefully acknowledge a Juan de la Cierva post-doctoral contract from the Ministerio de Ciencia e Innovación of Spain. A generous allocation of computing time at the CCC of the UAM is also acknowledged.

References

  1. 1.
    Bain O, Giguere PA (1955) Can J Chem 33:527–545CrossRefGoogle Scholar
  2. 2.
    Pople JA, Raghavachari K, Frisch MJ, Binkley JS, Schleyer PV (1983) J Am Chem Soc 105:6389–6398CrossRefGoogle Scholar
  3. 3.
    Huang HH, Xie YM, Schaefer HF (1996) J Phys Chem 100:6076–6080CrossRefGoogle Scholar
  4. 4.
    Schroder D, Schalley CA, Goldberg N, Hrusak J, Schwarz H (1996) Chem Eur J 2:1235–1242CrossRefGoogle Scholar
  5. 5.
    Pyykkö P (1995) J Am Chem Soc 117:2067–2070CrossRefGoogle Scholar
  6. 6.
    Schroder D, Schwarz H, Hrusak J, Pyykkö P (1998) Inorg Chem 37:624–632CrossRefGoogle Scholar
  7. 7.
    Pyykkö P (1989) Chem Phys Lett 162:349–354CrossRefGoogle Scholar
  8. 8.
    El-Nahas AM (2000) Chem Phys Lett 329:176–178CrossRefGoogle Scholar
  9. 9.
    Stace AJ, Walker NR, Wright RR, Firth S (2000) Chem Phys Lett 329:173–175CrossRefGoogle Scholar
  10. 10.
    Schroder D, Schwarz H, Wu JL, Wesdemiotis C (2001) Chem Phys Lett 343:258–264CrossRefGoogle Scholar
  11. 11.
    Palacios A, Corral I, Mó O, Martín F, Yáñez M (2005) J Chem Phys 123:014315 (014311-014315)Google Scholar
  12. 12.
    Palacios A, Martín F, Mó O, Yáñez M, Maksic ZB (2004) Phys Rev Lett 92:133001CrossRefGoogle Scholar
  13. 13.
    Schroder D, Schwarz H (1999) J Phys Chem A 103:7385–7394CrossRefGoogle Scholar
  14. 14.
    Franzreb K, Hrusak J, Alikhani ME, Lorincik J, Sobers RC, Williams P (2004) J Chem Phys 121:12293–12302CrossRefGoogle Scholar
  15. 15.
    Franzreb K, Sobers RC, Lorincik J, Williams P (2004) J Chem Phys 120:7983–7986CrossRefGoogle Scholar
  16. 16.
    Fiser J, Franzreb K, Lorincik J, Williams P (2009) Eur J Mass Spectrom 15:315–324CrossRefGoogle Scholar
  17. 17.
    Ohno Y, Kuroda T, Nakamura S (1978) Surf Sci 75:689–702CrossRefGoogle Scholar
  18. 18.
    Cársky P, Paldus J, Pittner J (2010) Recent progress in coupled cluster methods. Theory and applications. Springer, DordrechtGoogle Scholar
  19. 19.
    Helgaker T, Jorgensen P, Olsen P (2000) Molecular electronic-structure theory. Wiley, ChichesterGoogle Scholar
  20. 20.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  21. 21.
    Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) J Chem Phys 110:7667CrossRefGoogle Scholar
  22. 22.
    Roos BO (1987) In: Lawley KP (ed) Advances in Chemical Physics: Ab initio methods in quantum chem, Part II. Wiley, New YorkGoogle Scholar
  23. 23.
    Finley J, Malmqvist P-A, Roos BO, Serrano-Andrés L (1998) Chem Phys Lett 288:299CrossRefGoogle Scholar
  24. 24.
    Roos BO, Lindh R, Malmqvist P-A, Veryazov V, Widmark P-O (2005) J Phys Chem A 108:2851CrossRefGoogle Scholar
  25. 25.
    Karlström G (2003) Comput Mater Sci 28:222CrossRefGoogle Scholar
  26. 26.
    Frisch MJ (2004) GAUSSIAN 03, revision C.02. Gaussian, Inc., WallingfordGoogle Scholar
  27. 27.
    McCurdy CW, Rescigno TN (1997) Phys Rev A 56:R4369CrossRefGoogle Scholar
  28. 28.
    McCurdy CW, Rescigno TN, Byrum D (1997) Phys Rev A 56:1958CrossRefGoogle Scholar
  29. 29.
    McCurdy CW, Martín F (2004) J Phys B 37:917CrossRefGoogle Scholar
  30. 30.
    DeYonker NJ, Peterson KA, Wilson AK (2007) J Phys Chem A 111:11383–11393CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Departamento de Química, Módulo 13, Facultad de CienciasUniversidad Autónoma de MadridMadridSpain

Personalised recommendations