Theoretical Chemistry Accounts

, Volume 129, Issue 3–5, pp 389–399 | Cite as

Bonding in cationic MOH n + (M = K − La, Hf − Rn; n = 0–2): DFT performances and periodic trends

  • Xinhao ZhangEmail author
  • Helmut SchwarzEmail author
Regular Article


The performances of the DFT functionals B3LYP, BHandHLYP, M06, M06-2X, PBE1PBE, TPSSh, X3LYP, and BP86 have been benchmarked with a thermochemistry database containing 50 bond dissociation energies (BDEs) of M–OH n + complexes (n = 0–2). Among the tested methods, B3LYP was found to perform best both in accuracy and error distributions. Next, 162 BDEs (M+–OH n ) (M = K − La, Hf − Rn; n = 0–2) are calculated at the B3LYP/def2-QZVP level of theory and their periodic trends are presented as an overview. Further, the H-atom affinities of MO+ and MOH+ are derived from the calculated BDEs.


Bond dissociation energy M–O interaction DFT Benchmark Periodic trends 



Financial support by the Fonds der Chemischen Industrie, the Deutsche Forschungsgemeinschaft (“Cluster of Excellence: Unifying Concepts in Catalysis”) and, for computational resources, the Institut für Mathematik at the Technische Universität Berlin are acknowledged. We thank Dr. Detlef Schröder and Burkhard Butschke for helpful suggestions. X. Z. is grateful to the Alexander von Humboldt-Stiftung for a postdoctoral fellowship.

Supplementary material

214_2010_861_MOESM1_ESM.doc (51 kb)
Supplementary material 1 (DOC 51 kb)


  1. 1.
    Lunsford JH (1995) Angew Chem Int Ed 34(9):970–980CrossRefGoogle Scholar
  2. 2.
    Arndtsen BA, Bergman RG, Mobley TA, Peterson TH (1995) Acc Chem Res 28(3):154–162CrossRefGoogle Scholar
  3. 3.
    Labinger JA (2004) J Mol Catal A Chem 220(1):27–35CrossRefGoogle Scholar
  4. 4.
    Schröder D, Schwarz H (1995) Angew Chem Int Ed 34(18):1973–1995CrossRefGoogle Scholar
  5. 5.
    Schwarz H, Schröder D (2000) Pure Appl Chem 72(12):2319–2332CrossRefGoogle Scholar
  6. 6.
    O’Hair RAJ, Khairallah GN (2004) J Cluster Sci 15(3):331–363CrossRefGoogle Scholar
  7. 7.
    Böhme DK, Schwarz H (2005) Angew Chem Int Ed 44(16):2336–2354CrossRefGoogle Scholar
  8. 8.
    Johnson GE, Tyo EC, Castleman AW (2008) Proc Natl Acad Sci USA 105(47):18108–18113CrossRefGoogle Scholar
  9. 9.
    Schröder D, Schwarz H (2008) Proc Natl Acad Sci USA 105(47):18114–18119CrossRefGoogle Scholar
  10. 10.
    Schlangen M, Schwarz H (2009) Dalton Trans 46:10155–10165CrossRefGoogle Scholar
  11. 11.
    Roithová J, Schröder D (2009) Chem Rev 110(2):1170–1211CrossRefGoogle Scholar
  12. 12.
    Schwarz H (2010) Angew Chem Int Ed Engl (accepted)Google Scholar
  13. 13.
    Božović A, Feil S, Koyanagi G, Viggiano A, Zhang X, Schlangen M, Schwarz H, Bohme D (2010) Chem Eur J 16(38):11605–11610CrossRefGoogle Scholar
  14. 14.
    Schröder D, Schwarz H (1990) Angew Chem Int Ed 29(12):1433–1434CrossRefGoogle Scholar
  15. 15.
    Schröder D, Fiedler A, Hrušák J, Schwarz H (1992) J Am Chem Soc 114(4):1215–1222CrossRefGoogle Scholar
  16. 16.
    Schröder D, Schwarz H, Clemmer DE, Chen Y, Armentrout PB, Baranov VI, Böhme DK (1997) Int J Mass Spectrom Ion Processes 161(1–3):175–191CrossRefGoogle Scholar
  17. 17.
    Shiota Y, Yoshizawa K (2003) J Chem Phys 118(13):5872–5879CrossRefGoogle Scholar
  18. 18.
    Wesendrup R, Schröder D, Schwarz H (1994) Angew Chem Int Ed Engl 33(11):1174–1176CrossRefGoogle Scholar
  19. 19.
    Pavlov M, Blomberg MRA, Siegbahn PEM, Wesendrup R, Heinemann C, Schwarz H (1997) J Phys Chem A 101(8):1567–1579CrossRefGoogle Scholar
  20. 20.
    Ryan MF, Stöckigt D, Schwarz H (1994) J Am Chem Soc 116(21):9565–9570CrossRefGoogle Scholar
  21. 21.
    Koyanagi GK, Caraiman D, Blagojevic V, Bohme DK (2002) J Phys Chem A 106(18):4581–4590CrossRefGoogle Scholar
  22. 22.
    Lavrov VV, Blagojevic V, Koyanagi GK, Orlova G, Bohme DK (2004) J Phys Chem A 108(26):5610–5624CrossRefGoogle Scholar
  23. 23.
    Gong Y, Zhou M, Andrews L (2009) Chem Rev 109(12):6765–6808CrossRefGoogle Scholar
  24. 24.
    Shiota Y, Yoshizawa K (2000) J Am Chem Soc 122(49):12317–12326CrossRefGoogle Scholar
  25. 25.
    Nakao Y, Hirao K, Taketsugu T (2001) J Chem Phys 114(18):7935–7940CrossRefGoogle Scholar
  26. 26.
    Gutsev GL, Andrews L, Bauschlicher CW (2003) Theor Chem Acc 109(6):298–308Google Scholar
  27. 27.
    Schofield K (2006) J Phys Chem A 110(21):6938–6947CrossRefGoogle Scholar
  28. 28.
    Song P, Guan W, Yao C, Su Z, Wu Z, Feng J, Yan L (2007) Theor Chem Acc 117(3):407–415CrossRefGoogle Scholar
  29. 29.
    Yao C, Guan W, Song P, Su Z, Feng J, Yan L, Wu Z (2007) Theor Chem Acc 117(1):115–122CrossRefGoogle Scholar
  30. 30.
    Schröder D, Roithová J (2006) Angew Chem Int Ed 45(34):5705–5708CrossRefGoogle Scholar
  31. 31.
    Božović A, Bohme DK (2009) Phys Chem Chem Phys 11(28):5940–5951CrossRefGoogle Scholar
  32. 32.
    Feyel S, Döbler J, Höckendorf R, Beyer MK, Sauer J, Schwarz H (2008) Angew Chem Int Ed Engl 47(10):1946–1950CrossRefGoogle Scholar
  33. 33.
    de Petris G, Troiani A, Rosi M, Angelini G, Ursini O (2009) Chem Eur J 15(17):4248–4252CrossRefGoogle Scholar
  34. 34.
    Dietl N, Engeser M, Schwarz H (2009) Angew Chem Int Ed 48(26):4861–4863CrossRefGoogle Scholar
  35. 35.
    Zhang X, Schwarz H (2010) ChemCatChem 2(11):1391–1394CrossRefGoogle Scholar
  36. 36.
    Becke AD (1988) Phys Rev A 38(6):3098–3100CrossRefGoogle Scholar
  37. 37.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  38. 38.
    Becke AD (1993) J Chem Phys 98(7):5648–5652CrossRefGoogle Scholar
  39. 39.
    Becke AD (1993) J Chem Phys 98(2):1372–1377CrossRefGoogle Scholar
  40. 40.
    Zhao Y, Truhlar D (2008) Theor Chem Acc 120(1):215–241CrossRefGoogle Scholar
  41. 41.
    Ernzerhof M, Perdew JP (1998) J Chem Phys 109(9):3313–3320CrossRefGoogle Scholar
  42. 42.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91(14):146401CrossRefGoogle Scholar
  43. 43.
    Xu X, Goddard WA (2004) Proc Natl Acad Sci USA 101(9):2673–2677CrossRefGoogle Scholar
  44. 44.
    Perdew JP (1986) Phys Rev B 33(12):8822–8824CrossRefGoogle Scholar
  45. 45.
    Korth M, Grimme S (2009) J Chem Theory Comput 5(4):993–1003CrossRefGoogle Scholar
  46. 46.
    Armentrout PB (2003) Int J Mass Spectrom 227(3):289–302CrossRefGoogle Scholar
  47. 47.
    Rodgers MT, Armentrout PB (2004) Acc Chem Res 37(12):989–998CrossRefGoogle Scholar
  48. 48.
    Armentrout PB, Ervin KM, Rodgers MT (2008) J Phys Chem A 112(41):10071–10085CrossRefGoogle Scholar
  49. 49.
    Holthausen MC, Heinemann C, Cornehl HH, Koch W, Schwarz H (1995) J Chem Phys 102(12):4931–4941CrossRefGoogle Scholar
  50. 50.
    Holthausen MC, Mohr M, Koch W (1995) Chem Phys Lett 240(4):245–252CrossRefGoogle Scholar
  51. 51.
    Holthausen MC (2005) J Comput Chem 26(14):1505–1518CrossRefGoogle Scholar
  52. 52.
    Baker J, Pulay P (2003) J Comput Chem 24(10):1184–1191CrossRefGoogle Scholar
  53. 53.
    de Jong GT, Sola M, Visscher L, Bickelhaupt FM (2004) J Chem Phys 121(20):9982–9992CrossRefGoogle Scholar
  54. 54.
    Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem A 109(49):11127–11143CrossRefGoogle Scholar
  55. 55.
    Quintal MM, Karton A, Iron MA, Boese AD, Martin JML (2006) J Phys Chem A 110(2):709–716CrossRefGoogle Scholar
  56. 56.
    Furche F, Perdew JP (2006) J Chem Phys 124(4):044103–044127CrossRefGoogle Scholar
  57. 57.
    Jensen KP, Roos BO, Ryde U (2007) J Chem Phys 126(1):014103–014114CrossRefGoogle Scholar
  58. 58.
    Niu S, Hall MB (2000) Chem Rev 100(2):353–406CrossRefGoogle Scholar
  59. 59.
    Harrison JF (2000) Chem Rev 100(2):679–716CrossRefGoogle Scholar
  60. 60.
    Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11(46):10757–10816CrossRefGoogle Scholar
  61. 61.
    Zhao Y, González-García N, Truhlar DG (2005) J Phys Chem A 109(9):2012–2018CrossRefGoogle Scholar
  62. 62.
    Paier J, Marsman M, Kresse G (2007) J Chem Phys 127(2):024103–024110CrossRefGoogle Scholar
  63. 63.
    Cramer CJ, Gour JR, Kinal A, Wloch M, Piecuch P, Moughal Shahi AR, Gagliardi L (2008) J Phys Chem A 112(16):3754–3767CrossRefGoogle Scholar
  64. 64.
    Butschke B, Schröder D, Schwarz H (2009) Organometallics 28(15):4340–4349CrossRefGoogle Scholar
  65. 65.
    Zhao Y, Schultz NE, Truhlar DG (2005) J Chem Phys 123(16):161103–161104CrossRefGoogle Scholar
  66. 66.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2(2):364–382CrossRefGoogle Scholar
  67. 67.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41(2):157–167CrossRefGoogle Scholar
  68. 68.
    Grimme S (2006) J Comput Chem 27(15):1787–1799CrossRefGoogle Scholar
  69. 69.
    Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9(26):3397–3406CrossRefGoogle Scholar
  70. 70.
    Schwabe T, Grimme S (2008) Acc Chem Res 41(4):569–579CrossRefGoogle Scholar
  71. 71.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7(18):3297–3305CrossRefGoogle Scholar
  72. 72.
    Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H (1990) Theor Chim Acta 77(2):123–141CrossRefGoogle Scholar
  73. 73.
    Leininger T, Nicklass A, Stoll H, Dolg M, Schwerdtfeger P (1996) J Chem Phys 105(3):1052–1059CrossRefGoogle Scholar
  74. 74.
    Metz B, Stoll H, Dolg M (2000) J Chem Phys 113(7):2563–2569CrossRefGoogle Scholar
  75. 75.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119(21):11113–11123CrossRefGoogle Scholar
  76. 76.
    Dunning TH Jr, Hay PJ (1976) In: Schaefer III HF (ed) Modern theoretical chemistry, vol 3. Plenum, New York, pp 1–28Google Scholar
  77. 77.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, J. A., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.1. Gaussian, Inc., Wallingford CTGoogle Scholar
  78. 78.
    Höllwarth A, Böhme M, Dapprich S, Ehlers AW, Gobbi A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208(3–4):237–240CrossRefGoogle Scholar
  79. 79.
    Ehlers AW, Böhme M, Dapprich S, Gobbi A, Höllwarth A, Jonas V, Köhler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208(1–2):111–114CrossRefGoogle Scholar
  80. 80.
    Pyykkö P (1988) Chem Rev 88(3):563–594CrossRefGoogle Scholar
  81. 81.
    Hrušák J, Hertwig RH, Schröder D, Schwerdtfeger P, Koch W, Schwarz H (1995) Organometallics 14(3):1284–1291CrossRefGoogle Scholar
  82. 82.
    Heinemann C, Schwarz H, Koch W, Dyall KG (1996) J Chem Phys 104(12):4642–4651CrossRefGoogle Scholar
  83. 83.
    Schröder D, Schwarz H, Hrušák J, Pyykkö P (1998) Inorg Chem 37(4):624–632CrossRefGoogle Scholar
  84. 84.
    Pyykkö P (2002) Angew Chem Int Ed Engl 41(19):3573–3578CrossRefGoogle Scholar
  85. 85.
    Schwarz H (2003) Angew Chem Int Ed Engl 42(37):4442–4454CrossRefGoogle Scholar
  86. 86.
    Armentrout PB (1990) Annu Rev Phys Chem 41(1):313–344CrossRefGoogle Scholar
  87. 87.
    Armentrout PB (1991) Science 251(4990):175–179CrossRefGoogle Scholar
  88. 88.
    Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33(3):139–145CrossRefGoogle Scholar
  89. 89.
    Schwarz H (2004) Int J Mass Spectrom 237(1):75–105CrossRefGoogle Scholar
  90. 90.
    Poli R (2004) J Organomet Chem 689(24):4291–4304CrossRefGoogle Scholar
  91. 91.
    Harvey JN (2007) Phys Chem Chem Phys 9(3):331–343CrossRefGoogle Scholar
  92. 92.
    Harvey JN, Aschi M, Schwarz H, Koch W (1998) Theor Chem Acc 99(2):95–99Google Scholar
  93. 93.
    Landis CR, Morales CM, Stahl SS (2004) J Am Chem Soc 126(50):16302–16303CrossRefGoogle Scholar
  94. 94.
    Keith JM, Nielsen RJ, Oxgaard J, Goddard WA (2005) J Am Chem Soc 127(38):13172–13179CrossRefGoogle Scholar
  95. 95.
    Popp B, Wendlandt J, Landis CR, Stahl SS (2007) Angew Chem Int Ed 46(4):601–604CrossRefGoogle Scholar
  96. 96.
    Keith JM, Goddard WA (2009) J Am Chem Soc 131(4):1416–1425CrossRefGoogle Scholar
  97. 97.
    Popp BV, Morales CM, Landis CR, Stahl SS (2010) Inorg Chem 49(18):8200–8207CrossRefGoogle Scholar
  98. 98.
    Lanci MP, Brinkley DW, Stone KL, Smirnov VV, Roth JP (2005) Angew Chem Int Ed Engl 44(44):7273–7276CrossRefGoogle Scholar
  99. 99.
    Wang R, Zhang XH, Chen SJ, Yu X, Wang CS, Beach DB, Wu YD, Xue ZL (2005) J Am Chem Soc 127(14):5204–5211CrossRefGoogle Scholar
  100. 100.
    Chen SJ, Zhang XH, Yu X, Qiu H, Yap GPA, Guzei IA, Lin Z, Wu YD, Xue ZL (2007) J Am Chem Soc 129(46):14408–14421CrossRefGoogle Scholar
  101. 101.
    Huber S, Ertem M, Aquilante F, Gagliardi L, Tolman W, Cramer C (2009) Chem Eur J 15(19):4886–4895CrossRefGoogle Scholar
  102. 102.
    Yu H, Fu Y, Guo Q, Lin Z (2009) Organometallics 28(15):4443–4451CrossRefGoogle Scholar
  103. 103.
    Zhang X, Schlangen M, Baik M-H, Dede Y, Schwarz H (2009) Helv Chim Acta 92(1):151–164CrossRefGoogle Scholar
  104. 104.
    Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107(1):48–55Google Scholar
  105. 105.
    Zhang X, Schwarz H (2010) Chem Eur J 16(20):5882–5888Google Scholar
  106. 106.
    Pyykkö P, Riedel S, Patzschke M (2005) Chem Eur J 11(12):3511–3520CrossRefGoogle Scholar
  107. 107.
    Pyykkö P, Atsumi M (2009) Chem Eur J 15(1):186–197CrossRefGoogle Scholar
  108. 108.
    Pyykkö P, Atsumi M (2009) Chem Eur J 15(46):12770–12779CrossRefGoogle Scholar
  109. 109.
    Carter EA, Goddard WA (1988) J Phys Chem 92(8):2109–2115CrossRefGoogle Scholar
  110. 110.
    Carter EA, Goddard WA (1988) J Phys Chem 92(20):5679–5683CrossRefGoogle Scholar
  111. 111.
    Schröder D, Schwarz H, Harvey JN (2000) J Phys Chem A 104(48):11257–11260CrossRefGoogle Scholar
  112. 112.
    Miliordos E, Mavridis A (2007) J Phys Chem A 111(10):1953–1965CrossRefGoogle Scholar
  113. 113.
    Miliordos E, Mavridis A (2010) J Phys Chem A 114(33):8536–8572CrossRefGoogle Scholar
  114. 114.
    Fisher ER, Elkind JL, Clemmer DE, Georgiadis R, Loh SK, Aristov N, Sunderlin LS, Armentrout PB (1990) J Chem Phys 93(4):2676–2691CrossRefGoogle Scholar
  115. 115.
    Armentrout PB, Kickel BL, (1996) in Organometallic Ion Chemistry, Ed. Freiser BS (Kluwer, Dordrecht, 1996) 1Google Scholar
  116. 116.
    Rodgers MT, Walker B, Armentrout PB (1999) Int J Mass Spectrom 182–183:99–120Google Scholar
  117. 117.
    Clemmer DE, Dalleska NF, Armentrout PB (1991) J Chem Phys 95(10):7263–7268CrossRefGoogle Scholar
  118. 118.
    Dalleska NF, Armentrout PB (1994) Int J Mass Spectrom Ion Processes 134(2–3):203–212CrossRefGoogle Scholar
  119. 119.
    Sievers MR, Chen Y-M, Armentrout PB (1996) J Chem Phys 105(15):6322–6333CrossRefGoogle Scholar
  120. 120.
    Chen Y-M, Armentrout PB (1995) J Chem Phys 103(2):618–625CrossRefGoogle Scholar
  121. 121.
    Murad E (1981) J Chem Phys 75(8):4080–4085CrossRefGoogle Scholar
  122. 122.
    Hinton CS, Li F, Armentrout PB (2009) Int J Mass Spectrom 280(1–3):226–234Google Scholar
  123. 123.
    Irikura KK, Beauchamp JL (1991) J Phys Chem 95(21):8344–8351CrossRefGoogle Scholar
  124. 124.
    Irikura KK, Beauchamp JL (1989) J Am Chem Soc 111(1):75–85CrossRefGoogle Scholar
  125. 125.
    Zhang XG, Armentrout PB (2003) J Phys Chem A 107(42):8904–8914CrossRefGoogle Scholar
  126. 126.
    Li FX, Gorham K, Armentrout PB (2010) J Phys Chem A 114(42):11043–11052CrossRefGoogle Scholar
  127. 127.
    Clemmer DE, Aristov N, Armentrout PB (1993) J Phys Chem 97(3):544–552CrossRefGoogle Scholar
  128. 128.
    Clemmer DE, Chen Y-M, Khan FA, Armentrout PB (1994) J Phys Chem 98(26):6522–6529CrossRefGoogle Scholar
  129. 129.
    Chen Y-M, Clemmer DE, Armentrout PB (1994) J Am Chem Soc 116(17):7815–7826CrossRefGoogle Scholar
  130. 130.
    Dzidic I, Kebarle P (1970) J Phys Chem 74(7):1466–1474CrossRefGoogle Scholar
  131. 131.
    Kochanski E, Constantin E (1987) J Chem Phys 87(3):1661–1665CrossRefGoogle Scholar
  132. 132.
    Magnera TF, David DE, Michl J (1989) J Am Chem Soc 111(11):4100–4101CrossRefGoogle Scholar
  133. 133.
    Dalleska NF, Honma K, Sunderlin LS, Armentrout PB (1994) J Am Chem Soc 116(8):3519–3528CrossRefGoogle Scholar
  134. 134.
    Schultz RH, Armentrout PB (1993) J Phys Chem 97(3):596–603CrossRefGoogle Scholar
  135. 135.
    Koizumi H, Larson M, Muntean F, Armentrout PB (2003) Int J Mass Spectrom 228(2–3):221–235Google Scholar
  136. 136.
    Li S, Dixon DA (2007) J Phys Chem A 111(46):11908–11921CrossRefGoogle Scholar
  137. 137.
    Bauschlicher CW, Gutsev GL (2002) Theor Chem Acc 107(5):309–312Google Scholar
  138. 138.
    Cundari TR, Harvey JN, Klinckman TR, Fu W (1999) Inorg Chem 38(24):5611–5615CrossRefGoogle Scholar
  139. 139.
    Rue C, Armentrout PB, Kretzschmar I, Schröder D, Schwarz H (2002) J Phys Chem A 106(42):9788–9797CrossRefGoogle Scholar
  140. 140.
    Armentrout PB, Kretzschmar I (2009) Inorg Chem 48(21):10371–10382CrossRefGoogle Scholar
  141. 141.
    Liu F, Zhang X-G, Armentrout PB (2005) Phys Chem Chem Phys 7(5):1054–1064CrossRefGoogle Scholar
  142. 142.
    Roithová J, Schröder D (2009) Coord Chem Rev 253(5–6):666–677CrossRefGoogle Scholar
  143. 143.
    Lin Z (2010) Acc Chem Res 43(5):602–611CrossRefGoogle Scholar
  144. 144.
    Schwarz J, Schröder D, Schwarz H, Heinemann C, Hrušák J (1996) Helv Chim Acta 79(4):1110–1120CrossRefGoogle Scholar
  145. 145.
    Vukomanovic D, Stone JA (2000) Int J Mass Spectrom 202(1–3):251–259Google Scholar
  146. 146.
    Ricca A, Bauschlicher CW (1997) J Phys Chem A 101(47):8949–8955CrossRefGoogle Scholar
  147. 147.
    Schröder D, Souvi SO, Alikhani E (2009) Chem Phys Lett 470(4–6):162–165CrossRefGoogle Scholar
  148. 148.
    Cheng P, Koyanagi GK, Bohme DK (2007) J Phys Chem A 111(35):8561–8573CrossRefGoogle Scholar
  149. 149.
    Schröder D (2008) J Phys Chem A 112(50):13215–13224CrossRefGoogle Scholar
  150. 150.
    Kang H, Beauchamp JL (1986) J Am Chem Soc 108(24):7502–7509CrossRefGoogle Scholar
  151. 151.
    Janardanan D, Wang Y, Schyman P, Que L, Shaik S (2010) Angew Chem Int Ed 49(19):3342–3345Google Scholar
  152. 152.
    Gilbert JA, Eggleston DS, Murphy WR, Geselowitz DA, Gersten SW, Hodgson DJ, Meyer TJ (1985) J Am Chem Soc 107(13):3855–3864CrossRefGoogle Scholar
  153. 153.
    Yang X, Baik M-H (2006) J Am Chem Soc 128(23):7476–7485CrossRefGoogle Scholar
  154. 154.
    Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108(46):17886–17892CrossRefGoogle Scholar
  155. 155.
    Stahl SS (2004) Angew Chem Int Ed Engl 43(26):3400–3420CrossRefGoogle Scholar
  156. 156.
    Stahl SS (2005) Science 309(5742):1824–1826CrossRefGoogle Scholar
  157. 157.
    Ryan MF, Fiedler A, Schröder D, Schwarz H (1995) J Am Chem Soc 117(7):2033–2040CrossRefGoogle Scholar
  158. 158.
    de Macedo LGM, Pyykkö P (2008) Chem Phys Lett 462(1–3):138–143CrossRefGoogle Scholar
  159. 159.
    Roos BO, Pyykkö P (2010) Chem Eur J 16(1):270–275CrossRefGoogle Scholar
  160. 160.
    Pyykkö P (2010) Phys Chem Chem Phys. doi: 10.1039/C0CP01575J

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institut für ChemieTechnische Universität BerlinBerlinGermany

Personalised recommendations