Theoretical Chemistry Accounts

, Volume 129, Issue 3–5, pp 381–387 | Cite as

Theoretical study of the interaction between Pt(0) and MPH3 + fragments in complexes of the [Pt3 (μ-CO)3(PH3)3]–MPH3 + (M = Cu+, Au+, Ag+) type

  • Daniela Donoso
  • Fernando MendizabalEmail author
Regular Article


Ab initio calculations suggest that a series of complexes of the [Pt3(μ-CO)3(PH3)3]–MPH3 + type (M = Cu, Au, Ag) are stable. We have studied these complexes at the HF, MP2, B3LYP, and PBE levels of theory. The magnitude of the interaction energies and Pt3–M distances indicate a substantial covalent character of the bond, the latter being confirmed by orbital diagrams. The chemical bond is sensitive to electron correlation effects. In addition, the Fukui index of nucleophilic attack and electrophilicity index on the metal were used to explore possible sites where chemical reactivity may play a role.


Platinum clusters Metallic interactions Coin metals 



This research was financed by FONDECYT under Project 1100162 (Conicyt-Chile) and Project Millennium P07-006-F. D.D. has a National Doctoral Fellowship (CONICYT D-21.070.206) and support for the implementation of the Doctoral Thesis no. 24.090.116. We value and appreciate the comments of the referees who read the original manuscript.


  1. 1.
    Imhof D, Venanzi LM (1994) Chem Soc Rev 23:185–193CrossRefGoogle Scholar
  2. 2.
    Evans DG, Hallam MF, Mingos DMP, Wardle RWM (1987) J Chem Soc Dalton Trans 9:1889–1895CrossRefGoogle Scholar
  3. 3.
    Chatt J, Chini P (1970) J Chem Soc A 5:1538–1541Google Scholar
  4. 4.
    Moor A, Pregosin PS, Venanzi LM (1982) Inorg Chim Acta 61:135–140CrossRefGoogle Scholar
  5. 5.
    Braunstein P, Freyburger S, Bars O (1988) J Organomet Chem 352:C29–C33CrossRefGoogle Scholar
  6. 6.
    Stockhammer A, Dahmen K-H, Gerfin T, Venanzi LM, Gramlich V, Petter W (1991) Helvetica Chimica Acta 74:989–992CrossRefGoogle Scholar
  7. 7.
    Hao L, Xiao J, Vittal JJ, Puddephat RJ, Manojlović-Muir L, Muir KW, Torabi AA (1996) Inorg Chem 35:658–666CrossRefGoogle Scholar
  8. 8.
    González-Moraga G (ed) (1993) Cluster chemistry. Spring, New YorkGoogle Scholar
  9. 9.
    Braunstein P, Rosé J (1988) Stereochemistry of organometallic and inorganic compounds, vol III. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Ranachandran R, Puddephatt RJ (1993) Inorg Chem 32:2256–2260CrossRefGoogle Scholar
  11. 11.
    Burrows AD, Mingos DMP (1996) Coord Chem Rev 154:19–69CrossRefGoogle Scholar
  12. 12.
    Pyykkö P (1997) Chem Rev 97:597–636CrossRefGoogle Scholar
  13. 13.
    Pyykkö P (2004) Angew Chem Int Ed 43:4412–4456CrossRefGoogle Scholar
  14. 14.
    Albinati A, Dahmen K-H, Demartin F, Forward JM, Longley CJ, Mingos DMP, Venanzi LM (1992) Inorg Chem 31:2223–2229Google Scholar
  15. 15.
    Gilmour DI, Mingos DMP (1986) J Organomet Chem 302:127–146CrossRefGoogle Scholar
  16. 16.
    Mingos DMP, Slee T (1990) J Organomet Chem 394:679–698CrossRefGoogle Scholar
  17. 17.
    Evans DG (1988) J Organomet Chem 352:397–413CrossRefGoogle Scholar
  18. 18.
    Mendizabal F, Donoso D, Olea-Azar C, Mera R (2007) Theochemistry 803:39–44CrossRefGoogle Scholar
  19. 19.
    Mendizabal F, Olea-Azar C, Miranda S (2007) Int J Quantum Chem 107:1454–1458CrossRefGoogle Scholar
  20. 20.
    Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801–3807CrossRefGoogle Scholar
  21. 21.
    Parr RG, Yang W (1989) Density functional theory for atoms and molecules. Oxford Press, New YorkGoogle Scholar
  22. 22.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  23. 23.
    Parr RG, von Szentpaty L, Liu S (1999) J Am Chem Soc 121:1922–1924CrossRefGoogle Scholar
  24. 24.
    Parr RG, Pearson R (1984) J Am Soc 106:4049–4050CrossRefGoogle Scholar
  25. 25.
    Riedel S, Pyykkö P, Mata RA, Werner H-J (2005) Chem Phys Lett 405:148–152CrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG, Robb MA, Cheeseman JR, Keith KT, Petersson GA, Montgomery JA, Raghavachari K, Al-Laham MA, Zakrzewski VG, Ortiz JV, Foresman JB, Cioslowski J, Stefanov BB, Nanayakkara A, Challacombe M, Peng CY, Ayala PY, Chen W, Wong MW, Andres JL, Replogle ES, Gomperts R, Martin RL, Fox DJ, Binkley JS, Defrees DJ, Baker J, Stewart JP, Head-Gordon M, Gonzalez C, Pople JA (2003) Gaussian 03, Inc, PittsburghGoogle Scholar
  27. 27.
    Møller C, Plesset MS (1934) Phys Rev 46:618–622CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  29. 29.
    Christiansen P, Ermler W, Pitzer K (1985) Ann Rev Phys Chem 36:407–432CrossRefGoogle Scholar
  30. 30.
    Andrae M, Heisserman M, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141CrossRefGoogle Scholar
  31. 31.
    Bergner A, Dolg M, Küchle W, Stoll H, Preuss H (1993) Mol Phys 80:1431–1441CrossRefGoogle Scholar
  32. 32.
    Huzinaga S (1965) J Chem Phys 42:1293–1301CrossRefGoogle Scholar
  33. 33.
    Chattaraj PK, Roy DR (2006) Chem Rev 106:2065–2091CrossRefGoogle Scholar
  34. 34.
    Albinati A (1977) Inorg Chimica Acta 22:L31–L32CrossRefGoogle Scholar
  35. 35.
    Briant C, Wardle R, Mingos M (1994) J Organomet Chem 267:C49–C51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Departamento de Química, Facultad de CienciasUniversidad de ChileSantiagoChile

Personalised recommendations