Skip to main content
Log in

Electric field effects on nuclear spin–spin coupling tensors and chiral discrimination via NMR spectroscopy

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

An Erratum to this article was published on 12 August 2011

Abstract

Nuclear magnetic resonance spectrometers presently available are unable to recognize the two mirror-image forms of a chiral molecule, because in the absence of a chiral solvent, the NMR spectral parameters (chemical shifts and spin–spin coupling constants) are identical for the two enantiomers. This paper discusses how chirality may nevertheless, at least in theory, be recognized in liquid-state NMR spectroscopy by applying strong d.c. electric fields and measuring a pseudoscalar contribution to nuclear spin–spin coupling polarizability. Calculations are reported for medium-size chiral molecules, (2R)-N-methyloxaziridine, (R a )-1,3-dimethylallene, and (2R)-2-methyloxirane. The very small contributions provided by the pseudoscalar of nuclear spin–spin coupling polarizability seem rather difficult to detect via NMR experiments in disordered phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barra AL, Robert JB (1996) Mol Phys 88:875–886

    Article  CAS  Google Scholar 

  2. Laubender G, Berger R (2003) Chem Phys Chem 4:395–399

    CAS  Google Scholar 

  3. Soncini A, Faglioni F, Lazzeretti P (2003) Phys Rev A 68:0334021–4

    Article  Google Scholar 

  4. Buckingham AD (2004) Chem Phys Lett 398:1–5

    Article  CAS  Google Scholar 

  5. Buckingham AD, Fischer P (2006) Chem Phys 324:111–116

    Article  CAS  Google Scholar 

  6. Zanasi R, Pelloni S, Lazzeretti P (2007) J Comput Chem 28:2159–2163

    Article  CAS  Google Scholar 

  7. Pelloni S, Lazzeretti P, Zanasi R (2007) J Chem Theor Comput 3:1691–1698

    Article  CAS  Google Scholar 

  8. Lazzeretti P, Soncini A, Zanasi R (2008) Theor Chem Acc 119:99–106

    Article  CAS  Google Scholar 

  9. Grayson M (2003) Int J Mol Sci 4:218–230

    Article  CAS  Google Scholar 

  10. Buckingham AD, Pople JA (1955) Proc Phys Soc A 68:905–909

    Article  Google Scholar 

  11. Barron LD (1982) Molecular light scattering and optical activity. Cambridge University Press, Cambridge

    Google Scholar 

  12. Buckingham AD (1967) Adv Chem Phys 12:107–142

    Article  CAS  Google Scholar 

  13. Ramsey NF (1953) Phys Rev 91:303–307

    Article  CAS  Google Scholar 

  14. Pyykkö P (2000) Theor Chem Acc 103:214–216

    Google Scholar 

  15. Lazzeretti P (1989) Chem Phys 134:269–278

    Article  CAS  Google Scholar 

  16. Lazzeretti P (1987) Adv Chem Phys 75:507–549

    Article  Google Scholar 

  17. Lazzeretti P (2003) Electric and magnetic properties of molecules. In: Handbook of molecular physics and quantum chemistry, vol 3, Part 1, Chapter 3, Wiley, Chichester

  18. Mohr PJ, Taylor BN (2005) Rev Mod Phys 77:1–107

    Article  CAS  Google Scholar 

  19. Linderberg J, Öhrn Y (1973) Propagators in quantum chemistry. Academic Press, London

    Google Scholar 

  20. Oddershede J, Jørgensen P, Yaeger DL (1984) Computer Phys Rep 2:33–92

    Article  CAS  Google Scholar 

  21. Olsen J, Jorgensen P (1985) J Chem Phys 82:3235–3264

    Article  CAS  Google Scholar 

  22. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  24. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211

    Article  CAS  Google Scholar 

  25. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  26. Keal W, Tozer DJ (2003) J Chem Phys 119:3015–3024

    Article  CAS  Google Scholar 

  27. Keal W, Tozer DJ (2004) J Chem Phys 121:5654–5660

    Article  CAS  Google Scholar 

  28. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  29. DALTON, An electronic structure program, Release 2.0; 2005. http://www.kjemi.uio.no/software/dalton/

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 2003, Revision C.02. Gaussian, Inc., Wallingford, CT

  31. Sadlej AJ (1988) Collect Czech Chem Commun 53:1995–2016

    Article  CAS  Google Scholar 

  32. Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    Article  CAS  Google Scholar 

  33. Woon DE, Dunning TH Jr (1995) J Chem Phys 103:4572–4585

    Article  CAS  Google Scholar 

  34. van Duijneveldt FB (1971) Gaussian basis sets for the atoms H-Ne for use in molecular calculations. Res Report RJ 945, IBM

  35. Enevoldsen T, Oddershede J, Sauer SPA (1998) Theor Chem Acc 100:275–284

    CAS  Google Scholar 

  36. Provasi PF, Aucar GA, Sauer SPA (2001) J Chem Phys 115:1324–1334

    Article  CAS  Google Scholar 

  37. Barone V, Provasi PF, Peralta JE, Snyder JP, Sauer SPA, Contreras RH (2003) J Phys Chem A 107:4748–4754

    Article  CAS  Google Scholar 

  38. Rusakov YY, Krivdin LB, Sauer SPA, Levanova EP, Levkovskaya GG (2010) Magn Res Chem 48:633–637

    Google Scholar 

  39. Provasi PF, Sauer SPA (2010) J Chem Phys 133:54308

    Article  Google Scholar 

  40. Jensen F (2006) J Chem Theory Comput 2:1360–1369

    Article  CAS  Google Scholar 

  41. Benedikt U, Auer AA, Jensen F (2008) J Chem Phys 129:64111

    Article  Google Scholar 

  42. Giorgio E, Viglione RG, Zanasi R, Rosini C (2004) J Am Chem Soc 126:2968

    Article  Google Scholar 

Download references

Acknowledgments

Financial support (UBACYT X079 from the University of Buenos Aires and PIP0369 from CONICET) is gratefully acknowledged. SPAS acknowledges support from the Danish Center for Scientific Computing (DCSC) and the financial support from the Carlsberg Foundation and from the Danish Natural Science Research Council/The Danish Councils for Independent Research (grant number 272-08-0486).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Lazzeretti.

Additional information

Dedicated to Professor Pekka Pyykkö on the occasion of his 70th birthday and published as part of the Pyykkö Festschrift Issue.

Contribution to honor the scientific work and life of Prof. Pekka Pyykkö.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00214-011-1017-6

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (90 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagola, G.I., Ferraro, M.B., Pelloni, S. et al. Electric field effects on nuclear spin–spin coupling tensors and chiral discrimination via NMR spectroscopy. Theor Chem Acc 129, 359–366 (2011). https://doi.org/10.1007/s00214-010-0851-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0851-2

Keywords

Navigation