Advertisement

Theoretical Chemistry Accounts

, Volume 129, Issue 3–5, pp 359–366 | Cite as

Electric field effects on nuclear spin–spin coupling tensors and chiral discrimination via NMR spectroscopy

  • Gabriel I. Pagola
  • Marta B. Ferraro
  • Stefano Pelloni
  • Paolo LazzerettiEmail author
  • Stephan P. A. Sauer
Regular Article

Abstract

Nuclear magnetic resonance spectrometers presently available are unable to recognize the two mirror-image forms of a chiral molecule, because in the absence of a chiral solvent, the NMR spectral parameters (chemical shifts and spin–spin coupling constants) are identical for the two enantiomers. This paper discusses how chirality may nevertheless, at least in theory, be recognized in liquid-state NMR spectroscopy by applying strong d.c. electric fields and measuring a pseudoscalar contribution to nuclear spin–spin coupling polarizability. Calculations are reported for medium-size chiral molecules, (2R)-N-methyloxaziridine, (R a )-1,3-dimethylallene, and (2R)-2-methyloxirane. The very small contributions provided by the pseudoscalar of nuclear spin–spin coupling polarizability seem rather difficult to detect via NMR experiments in disordered phase.

Keywords

Chiral discrimination Enantiomeric molecules in disordered phase Nuclear magnetic resonance spectroscopy Electric dipole polarizability of nuclear spin-spin coupling 

Notes

Acknowledgments

Financial support (UBACYT X079 from the University of Buenos Aires and PIP0369 from CONICET) is gratefully acknowledged. SPAS acknowledges support from the Danish Center for Scientific Computing (DCSC) and the financial support from the Carlsberg Foundation and from the Danish Natural Science Research Council/The Danish Councils for Independent Research (grant number 272-08-0486).

Supplementary material

214_2010_851_MOESM1_ESM.pdf (90 kb)
PDF (90 KB)

References

  1. 1.
    Barra AL, Robert JB (1996) Mol Phys 88:875–886CrossRefGoogle Scholar
  2. 2.
    Laubender G, Berger R (2003) Chem Phys Chem 4:395–399Google Scholar
  3. 3.
    Soncini A, Faglioni F, Lazzeretti P (2003) Phys Rev A 68:0334021–4CrossRefGoogle Scholar
  4. 4.
    Buckingham AD (2004) Chem Phys Lett 398:1–5CrossRefGoogle Scholar
  5. 5.
    Buckingham AD, Fischer P (2006) Chem Phys 324:111–116CrossRefGoogle Scholar
  6. 6.
    Zanasi R, Pelloni S, Lazzeretti P (2007) J Comput Chem 28:2159–2163CrossRefGoogle Scholar
  7. 7.
    Pelloni S, Lazzeretti P, Zanasi R (2007) J Chem Theor Comput 3:1691–1698CrossRefGoogle Scholar
  8. 8.
    Lazzeretti P, Soncini A, Zanasi R (2008) Theor Chem Acc 119:99–106CrossRefGoogle Scholar
  9. 9.
    Grayson M (2003) Int J Mol Sci 4:218–230CrossRefGoogle Scholar
  10. 10.
    Buckingham AD, Pople JA (1955) Proc Phys Soc A 68:905–909CrossRefGoogle Scholar
  11. 11.
    Barron LD (1982) Molecular light scattering and optical activity. Cambridge University Press, CambridgeGoogle Scholar
  12. 12.
    Buckingham AD (1967) Adv Chem Phys 12:107–142CrossRefGoogle Scholar
  13. 13.
    Ramsey NF (1953) Phys Rev 91:303–307CrossRefGoogle Scholar
  14. 14.
    Pyykkö P (2000) Theor Chem Acc 103:214–216Google Scholar
  15. 15.
    Lazzeretti P (1989) Chem Phys 134:269–278CrossRefGoogle Scholar
  16. 16.
    Lazzeretti P (1987) Adv Chem Phys 75:507–549CrossRefGoogle Scholar
  17. 17.
    Lazzeretti P (2003) Electric and magnetic properties of molecules. In: Handbook of molecular physics and quantum chemistry, vol 3, Part 1, Chapter 3, Wiley, ChichesterGoogle Scholar
  18. 18.
    Mohr PJ, Taylor BN (2005) Rev Mod Phys 77:1–107CrossRefGoogle Scholar
  19. 19.
    Linderberg J, Öhrn Y (1973) Propagators in quantum chemistry. Academic Press, LondonGoogle Scholar
  20. 20.
    Oddershede J, Jørgensen P, Yaeger DL (1984) Computer Phys Rep 2:33–92CrossRefGoogle Scholar
  21. 21.
    Olsen J, Jorgensen P (1985) J Chem Phys 82:3235–3264CrossRefGoogle Scholar
  22. 22.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  23. 23.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  24. 24.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58:1200–1211CrossRefGoogle Scholar
  25. 25.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627CrossRefGoogle Scholar
  26. 26.
    Keal W, Tozer DJ (2003) J Chem Phys 119:3015–3024CrossRefGoogle Scholar
  27. 27.
    Keal W, Tozer DJ (2004) J Chem Phys 121:5654–5660CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  29. 29.
    DALTON, An electronic structure program, Release 2.0; 2005. http://www.kjemi.uio.no/software/dalton/
  30. 30.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 2003, Revision C.02. Gaussian, Inc., Wallingford, CTGoogle Scholar
  31. 31.
    Sadlej AJ (1988) Collect Czech Chem Commun 53:1995–2016CrossRefGoogle Scholar
  32. 32.
    Dunning TH Jr (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  33. 33.
    Woon DE, Dunning TH Jr (1995) J Chem Phys 103:4572–4585CrossRefGoogle Scholar
  34. 34.
    van Duijneveldt FB (1971) Gaussian basis sets for the atoms H-Ne for use in molecular calculations. Res Report RJ 945, IBMGoogle Scholar
  35. 35.
    Enevoldsen T, Oddershede J, Sauer SPA (1998) Theor Chem Acc 100:275–284Google Scholar
  36. 36.
    Provasi PF, Aucar GA, Sauer SPA (2001) J Chem Phys 115:1324–1334CrossRefGoogle Scholar
  37. 37.
    Barone V, Provasi PF, Peralta JE, Snyder JP, Sauer SPA, Contreras RH (2003) J Phys Chem A 107:4748–4754CrossRefGoogle Scholar
  38. 38.
    Rusakov YY, Krivdin LB, Sauer SPA, Levanova EP, Levkovskaya GG (2010) Magn Res Chem 48:633–637Google Scholar
  39. 39.
    Provasi PF, Sauer SPA (2010) J Chem Phys 133:54308CrossRefGoogle Scholar
  40. 40.
    Jensen F (2006) J Chem Theory Comput 2:1360–1369CrossRefGoogle Scholar
  41. 41.
    Benedikt U, Auer AA, Jensen F (2008) J Chem Phys 129:64111CrossRefGoogle Scholar
  42. 42.
    Giorgio E, Viglione RG, Zanasi R, Rosini C (2004) J Am Chem Soc 126:2968CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Gabriel I. Pagola
    • 1
  • Marta B. Ferraro
    • 1
  • Stefano Pelloni
    • 2
  • Paolo Lazzeretti
    • 2
    Email author
  • Stephan P. A. Sauer
    • 3
  1. 1.Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires and IFIBA, CONICET Ciudad UniversitariaBuenos AiresArgentina
  2. 2.Dipartimento di Chimica dell’Università degli Studi di Modena e Reggio EmiliaModenaItaly
  3. 3.Department of ChemistryUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations