Advertisement

Theoretical Chemistry Accounts

, Volume 129, Issue 3–5, pp 343–347 | Cite as

Spin–orbit ab initio study of two low-lying states of chloroiodomethane cation

  • Joonghan Kim
  • Hyotcherl Ihee
  • Yoon Sup LeeEmail author
Regular Article

Abstract

Spin–orbit coupling plays a crucial role in the determination of molecular structure and calculation of vibrational frequencies of CH2ClI+. We performed the geometry optimizations and vibrational frequency calculations of both the lower and upper spin–orbit (SO) states using an ab initio SO method based on multiconfigurational wave function. The multistate complete active space perturbation theory second-order SO (MS-CASPT2-SO) method reasonably describes the structures of the lower SO state, yielding the C–I distance and the I–C–Cl angle close to the experimental values. The geometrical parameters of the upper SO state is quite similar to that of the lower SO state, whereas structures of two states differ substantially in calculations prior to the introduction of SO coupling. The MS-CASPT2-SO method reproduces the difference between the lower and upper SO states for the I–C–Cl bending frequency. The vibrational frequencies calculated by MS-CASPT2-SO generally overestimate in comparison with the experiments. The energy gap between the two SO states calculated by MS-CASPT2-SO is reasonably close to the experimental value. To the best of our knowledge, this is the first attempt to calculate vibrational frequencies of two SO states of CH2ClI+, and the first time to apply MS-CASPT2-SO method to the geometry optimization and vibrational frequency calculation of polyatomic molecule.

Keywords

Dihalomethane Cation Spin–orbit coupling Ab initio 

Notes

Acknowledgments

The authors thank Prof. M. S. Kim for helpful discussion and suggestion for this study. This work was supported by grants (2009-0084918, 2010-0001632) from National Research Foundation. Computational resources were provided by the supercomputing center of the Korea Institute of Science and Technology Information (KSC-2009-S02-0015). JK and HI acknowledge the support from Creative Research Initiatives (Center for Time-Resolved Diffraction) of MEST/NRF and the WCU program.

References

  1. 1.
    Alicke B, Hebestreit K, Stutz J, Platt U (1999) Nature 397:572–573CrossRefGoogle Scholar
  2. 2.
    Finalayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere. Academic Press, San DiegoGoogle Scholar
  3. 3.
    Ajitha D, Fedorov DG, Finley JP, Hirao K (2002) J Chem Phys 117:7068–7076CrossRefGoogle Scholar
  4. 4.
    Ajitha D, Wierzbowska M, Lindh R, Malmqvist PA (2004) J Chem Phys 121:5761–5766CrossRefGoogle Scholar
  5. 5.
    Alekseyev AB, Liebermann HP, Buenker RJ (2007) J Chem Phys 126:234102CrossRefGoogle Scholar
  6. 6.
    Alekseyev AB, Liebermann HP, Buenker RJ (2007) J Chem Phys 126:234103CrossRefGoogle Scholar
  7. 7.
    Amatatsu Y, Morokuma K, Yabushita S (1991) J Chem Phys 94:4858–4876CrossRefGoogle Scholar
  8. 8.
    Amatatsu Y, Yabushita S, Morokuma K (1996) J Chem Phys 104:9783–9794CrossRefGoogle Scholar
  9. 9.
    Liu YJ, Ajitha D, Krogh JW, Tarnovsky AN, Lindh R (2006) Chem Phys Chem 7:955–963Google Scholar
  10. 10.
    Liu YJ, Xiao HY, Sun MT, Fang WH (2008) J Comput Chem 29:2513–2519CrossRefGoogle Scholar
  11. 11.
    Yabushita S, Morokuma K (1988) Chem Phys Lett 153:517–521CrossRefGoogle Scholar
  12. 12.
    Eppink ATJB, Parker DH (1998) J Chem Phys 109:4758–4767CrossRefGoogle Scholar
  13. 13.
    Eppink ATJB, Parker DH (1999) J Chem Phys 110:832–844CrossRefGoogle Scholar
  14. 14.
    Gougousi T, Samartzis PC, Kitsopoulos TN (1998) J Chem Phys 108:5742–5746CrossRefGoogle Scholar
  15. 15.
    Kim TK, Lee KW, Lee KS, Lee EK, Jung KH (2007) Chem Phys Lett 446:31–35CrossRefGoogle Scholar
  16. 16.
    Kim TK, Park MS, Lee KW, Jung KH (2001) J Chem Phys 115:10745–10752CrossRefGoogle Scholar
  17. 17.
    Kim YS, Kang WK, Jung KH (1996) J Chem Phys 105:551–557CrossRefGoogle Scholar
  18. 18.
    Lee M, Kim H, Lee YS, Kim MS (2005) J Chem Phys 122:244319CrossRefGoogle Scholar
  19. 19.
    Lee M, Kim H, Lee YS, Kim MS (2005) Angew Chem Int Ed 44:2929–2931CrossRefGoogle Scholar
  20. 20.
    Lee M, Kim H, Lee YS, Kim MS (2005) J Chem Phys 123:024310CrossRefGoogle Scholar
  21. 21.
    Pyykkö P (1988) Chem Rev 88:563–594CrossRefGoogle Scholar
  22. 22.
    Nichols P, Govind N, Bylaska EJ, de Jong WA (2009) J Chem Theory Comput 5:491–499CrossRefGoogle Scholar
  23. 23.
    Lee M, Kim MS (2006) Chem Phys Lett 431:19–23CrossRefGoogle Scholar
  24. 24.
    Fedorov DG, Finley JP (2001) Phys Rev A 64:042502CrossRefGoogle Scholar
  25. 25.
    Malmqvist PA, Roos BO, Schimmelpfennig B (2002) Chem Phys Lett 357:230–240CrossRefGoogle Scholar
  26. 26.
    Ellingsen K, Saue T, Pouchan C, Gropen O (2005) Chem Phys 311:35–44CrossRefGoogle Scholar
  27. 27.
    Gagliardi L, Roos BO (2005) Nature 433:848–851CrossRefGoogle Scholar
  28. 28.
    Roos BO (1987) Advances in chemical physics; ab initio methods in quantum chemistry II. John Wiley and Sons, Chichester, England, p 399Google Scholar
  29. 29.
    Hess BA (1986) Phys Rev A 33:3742–3748CrossRefGoogle Scholar
  30. 30.
    Jansen G, Hess BA (1989) Phys Rev A 39:6016–6017CrossRefGoogle Scholar
  31. 31.
    Roos BO, Lindh R, Malmqvist PA, Veryazov V, Widmark PO (2004) J Phys Chem A 108:2851–2858CrossRefGoogle Scholar
  32. 32.
    Finley J, Malmqvist PA, Roos BO, Serrano-Andres L (1998) Chem Phys Lett 288:299–306CrossRefGoogle Scholar
  33. 33.
    Hess BA, Marian CM, Wahlgren U, Gropen O (1996) Chem Phys Lett 251:365–371CrossRefGoogle Scholar
  34. 34.
    Karlstrom G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) MOLCAS: a program package for computational chemistry. Comput Mater Sci 28:222–239CrossRefGoogle Scholar
  35. 35.
    Kim J, Jun S, Kim J, Ihee H (2009) J Phys Chem A 113:11059–11066CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Center for Time-Resolved Diffraction, Department of Chemistry, Graduate School of Nanoscience & Technology (WCU)KAISTDaejeonRepublic of Korea
  2. 2.Department of ChemistryKAISTDaejeonRepublic of Korea

Personalised recommendations