Skip to main content
Log in

Vibrational dynamics of polyatomic molecules in solution: assignment, time evolution and mixing of instantaneous normal modes

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Intramolecular vibrational dynamics of polyatomic molecules in solution can be addressed through normal mode analysis based on either equilibrium normal modes (ENMs) or instantaneous normal modes (INMs). While the former offers a straightforward way of examining experimental spectra, the latter provides a decoupled short-time description of the vibrational motions of the molecule. In order to reconcile both representations, a realistic assignment of the INMs in terms of the ENMs is needed. In this paper, we describe a novel method to assign the INMs using the ENMs as templates, which provides a unique relationship between the two sets of normal modes. The method is based specifically on the use of the so-called Min-Cost or Min-Sum algorithm, duly adapted to our problem, to maximize the overlaps between the two sets of modes. The identification of the INMs as the system evolves with time then allows us to quantify the vibrational energy stored in each INM and so monitor the flows of intramolecular vibrational energy within the solute molecule. We also discuss the degree of mixing of the INMs and characterize the way they change with time by means of the corresponding autocorrelation functions. The usefulness of the method is illustrated by carrying out equilibrium molecular dynamics (MD) simulations of the deuterated N-methylacetamide (NMAD) molecule in D2O solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hill JR, Ziegler CJ, Suslick KS, Dlott DD, Rella CW, Fayer MD (1996) Tuning the vibrational relaxation of co bound to heme and metalloporphyrin complexes. J Phys Chem 100:18023–18032

    Article  CAS  Google Scholar 

  2. Hamm P, Lim MH, Hochstrasser RM (1998) Structure of the amide i band of peptides measured by femtosecond nonlinear-infrared spectroscopy. J Phys Chem B 102 (31):6123–6138

    Article  CAS  Google Scholar 

  3. Peterson KA, Rella CW, Engholm JR, Schwettman HA (1999) Ultrafast vibrational dynamics of the myoglobin amide i band. J Phys Chem B 103(3):557–561

    Article  CAS  Google Scholar 

  4. Dlott DD (2001) Vibrational energy redistribution in polyatomic liquids: 3d infrared-raman spectroscopy. Chem Phys 266:149

    Article  CAS  Google Scholar 

  5. Iwaki L, Dlott DD (2001) Vibrational energy transfer in condensed phases. In: Moore JH, Spencer ND (eds) Encyclopedia of chemical physics and physical chemistry. IOP Publishing Ltd, Bristol, p 2717

  6. Fayer MD (2001a) Fast protein dynamics probed with infrared vibrational echo experiments. Annu Rev Phys Chem 52:315

    Article  CAS  Google Scholar 

  7. Fayer MD (2001b) Ultrafast infrared and Raman spectroscopy. Marcel Dekker Inc, New York

    Book  Google Scholar 

  8. Cremeens ME, Fujisaki H, Zhang Y, Zimmermann J, Sagle LB, MAtsuda S, Dawson PE, Straub JE, Romesberg FE (2006) Efforts toward developing direct probes of protein dynamics. J Am Chem Soc 128:6028–6029

    Article  CAS  Google Scholar 

  9. Shigeto S, Dlott DD (2007) Vibrational relaxation of an amino acid in aqueous solution. Chem Phys Lett 447:134–139

    Article  CAS  Google Scholar 

  10. Wang ZH, Carter JA, Lagutchev A, Koh YK, Seong N-H, Cahill DG, Dlott DD (2007) Ultrafast flash thermal conductance of molecular chains. Science 317:787

    Article  CAS  Google Scholar 

  11. Shigeto S, Pang Y, Fang Y, Dlott DD (2008) Vibrational relaxation of normal and deuterated liquid nitromethane. J Phys Chem B 112:232–241

    Article  CAS  Google Scholar 

  12. Schade M, Moretto A, Crisma M, Toniolo C, Hamm P (2009) Vibrational energy trasnport in pepetide helices after excitation of c-d modes in leu-d 10. J Phys Chem A 113:13393–13397

    CAS  Google Scholar 

  13. Fang Y, Shigeto S, Seong N, Dlott D (2009) Vibrational energy dynamics of glycine, n-methylacetamide, and benzoate anion in aqueous (d2o) solution. J Phys Chem A 113(1):75–84

    Article  CAS  Google Scholar 

  14. Nguyen PH, Stock G (2003) Nonequilibrium molecular-dynamics study of the vibrational energy relaxation of peptides in water. J Chem Phys 119(21):11350–11358

    Article  CAS  Google Scholar 

  15. Frauenfelder H, Bishop AR, Garcia A, Perelson A, Schuster P, Sherrington D, Swart PJ (1997) Landscape paradigms in physics and biology: Concepts, structures, and dynamics. North-Holand, Amsterdam

  16. Frauenfelder H, McMahon BH, Austin RH, Chu K, Groves JT (2001) The role of structure, energy landscape, dynamics, and allostery in the enzymatic function of myoglobin. Proc Natl Acad Sci USA 98:2370–2374

    Article  CAS  Google Scholar 

  17. Frauenfelder H, McMahon BH, Fenimore PW (2003) Myoglobin: The hydrogen atom of biology and a paradigm of complexity. Proc Natl Acad Sci 100:8615–8617

    Article  CAS  Google Scholar 

  18. Lubchenko V, Wolynes PG, Frauenfelder H (2005) Mosaic energy landscapes of liquids and the control of protein conformational dynamics by glass-forming solvents. J Phys Chem B 109:7488–7499

    Article  CAS  Google Scholar 

  19. Moritsugu K, Miyashita O, Kidera A (2000) Vibrational energy transfer in a protein molecule. Phys Rev Lett 85:3970–3973

    Article  CAS  Google Scholar 

  20. Roitberg A, Gerber BB, Ratner MA (1997) A vibrational eigenfunction of a protein: Anharmonic coupled-mode ground and fundamental excited states of bpti. J Phys Chem B 101:1700–1706

    Article  CAS  Google Scholar 

  21. Hayward S, Kitao A, Go N (1994) Harmonic and anharmonic aspects in the dynamics of bpti: A normal mode analysis and principal component analysis. Protein Sci 3:936–943

    Article  CAS  Google Scholar 

  22. Go N, Noguti T, Nishikawa T (1983) Dynamics of a small globular protein in terms of low-frequency vibrational-modes. Proc Natl Acad Sci USA 80:3696

    Article  CAS  Google Scholar 

  23. Hayward S, Kitao A, Go N (1995) Harmonicity and anharmonicity in protein dynamics: A normal mode analysis and principal component analysis. Proteins 23:177–186

    Article  CAS  Google Scholar 

  24. Ohmine I, Tanaka H (1990) Potential energy surfaces for water dynamics. II. Vibrational mode excitations, mixing and relaxations. J Chem Phys 93:8138–8147

    Article  CAS  Google Scholar 

  25. Ohmine I, Tanaka H (1993) Fluctuation, relaxations, and hydration in liquid water. hydrogen-bond rearrangement dynamics. Chem Rev 93:2545–2566

    Article  CAS  Google Scholar 

  26. Sagnella DE, Straub JE (1999) A study of vibrational relaxation of b-state carbon monoxide in the heme pocket of photolyzed carboxymyoglobin. Biophys J 77:70–84

    Article  CAS  Google Scholar 

  27. Rao F, Karplus M (2010) Protein dynamics investigated by inherent structure analysis. Proc Natl Acad Sci USA 107:9152–9157

    Article  CAS  Google Scholar 

  28. Elber R, Karplus M (1987) Multiple conformational states of proteins: A molecular dynamics analysis of myoglobin. Science 235:318

    Article  CAS  Google Scholar 

  29. Fujisaki H, Stock G (2008) Dynamic treatment of vibrational energy relaxation in a heterogeneous and fluctuating environment. J Chem Phys 129(13):134110

    Article  Google Scholar 

  30. Levy RM, Perahia D, Karplus M (1982) Molecular-dynamics of an alpha-helical polypeptide-temperature-dependence and deviation from harmonic behavior. Proc Natl Acad Sci USA 79:1346–1350

    Article  CAS  Google Scholar 

  31. Karplus M, Kushick J (1981) Method for estimating the configurational entropy of macromolecules. Macromolecules 14:325–332

    Article  CAS  Google Scholar 

  32. Levy RM, Karplus M, Kushick J, Perahia D (1984) Evaluation of the configurational entropy for proteins—Application to molecular-dynamics simulations of an alpha-helix. Macromolecules 17:1370–1374

    Article  CAS  Google Scholar 

  33. Buchner M, Ladanyi B, Stratt RM (1992) The short-time dynamics of molecular liquids. Instantaneous-normal-mode theory. J Chem Phys 97:8522–8535

    Article  CAS  Google Scholar 

  34. Goodyear G, Stratt RM (1997) The short-time intramolecular dynamics of solutes in liquids. 2. Vibrational population relaxation. J Chem Phys 107:3098–3120

    Article  CAS  Google Scholar 

  35. Keyes T (1997) Instantaneous normal mode approach to liquid state dynamics. J Phys Chem A 101:2921–2930

    Article  CAS  Google Scholar 

  36. David EF, Stratt RM (1998) The anharmonic features of the short-time dynamics of fluids: The time evolution and mixing of instantaneous normal modes. J Chem Phys 109:1375–1390

    Article  CAS  Google Scholar 

  37. Stratt RM (2001) The molecular mechanism behind the vibrational population relaxation of small molecules in liquids. In: Fayer MD (eds) Ultrafast infrared and Raman spectroscopy. Marcel Dekker Inc, New York, pp. 149–190

  38. Garberoglio G, Vallauri R (2002) Instantaneous normal mode analysis of short-time dynamics in hydrogen-bonded liquids. Physica A 314:492–500

    Article  CAS  Google Scholar 

  39. Kramer N, Buchner M, Dorfmuller T (1998) Normal mode dynamics in simple liquids. J Chem Phys 109:1912–1919

    Article  CAS  Google Scholar 

  40. Moore PB, Ji XD, Ahlborn H, Space B (1998) An instantaneous normal mode theory of condensed phase absortion: The vibrational spectrum of condensed cs2 from bpiling to freezing. Chem Phys Lett 296:259–265

    Article  CAS  Google Scholar 

  41. Ahlborn H, Ji XD, Space B, Moore PB (1999) A combined instantaneous normal mode and time correlation function description of the infrarred vibrational spectrum of ambient water. J Chem Phys 111:10622–10632

    Article  CAS  Google Scholar 

  42. Ji XD, Alhborn H, Space B, Moore PB, Zhou Y, Constantine S, Ziegler LD (2000) A combined instantaneous normal mode and time correlation function description of the optical Kerr effect and Raman spectroscopy of liquid cs2. J Chem Phys 112:4186–4192

    Article  CAS  Google Scholar 

  43. Perry A, Ahlborn H, Space B, Moore PB (2003) A combined time correlation function and instantaneous normal mode study of the sum frequency generation spectroscopy of the water/vapor interface. J Chem Phys 118:8411–8419

    Article  CAS  Google Scholar 

  44. Deng YQ, Ladanyi BM, Stratt RM (2002) High-frequency vibrational energy relaxation in liquids: The foundations of instantaneous-pair theory and some generalizations. J Chem Phys 117:10752–10767

    Article  CAS  Google Scholar 

  45. Bu L, Straub JE (2003) Vibrational frequency shifts and relaxation rates for a selected vibrational mode in cytochrome c. Biophys J 85:1429–1439

    Article  CAS  Google Scholar 

  46. Fujisaki H, Yagi K, Straub JE, Stock G (2009) Quantum and classical vibrational relaxation dynamics of n-methylacetamide on ab initio potential energy surfaces. Int J Quant Chem 109:2047–2057

    Article  CAS  Google Scholar 

  47. Schulz R, Krishnana M, Daidone I, Smith JC (2009) Instantaneous normal modes and the protein glass transition. Biophys J 96:476–484

    Article  CAS  Google Scholar 

  48. Bastida A, Soler MA, Zúñiga J, Requena A, Kalstein A, Fernandez-Alberti S (2010) Instantaneous normal modes, resonances and assignments in the vibrational relaxation of the amide i mode of n-methylacetamide-d in aqueous (d2o) solution. J Chem Phys 132:224501

    Article  Google Scholar 

  49. Bastida A, Soler MA, Zúñiga J, Requena A, Fernández-Alberti S, Kalstein A (in press) Molecular dynamics simulations and instantaneous normal mode analysis of the vibrational relaxation of the C–H stretching modes of n-methylacetamide-d in liquid deuterated water. J Phys Chem A (in press)

  50. Cho M, Fleming GR, Saito S, Ohmine I, Stratt RM (1994) Instantaneous normal-mode analysis of liquid water. J Chem Phys 100:6672–6683

    Article  CAS  Google Scholar 

  51. Ladanyi BM, Klein S (1996) Contributions of rotation and translation to polarizability anisotropy and solvation dynamics in acetonitrile. J Chem Phys 105:1552–1561

    Article  CAS  Google Scholar 

  52. Stratt RM, Cho M (1994) The short-time dynamics of solvation. J Chem Phys 100:6700–6708

    Article  CAS  Google Scholar 

  53. Kalbfleisch TS, Ziegler LD, Keyes T (1996) An instantaneous normal mode analysis of solvation: Methyl iodide in high pressure gases. J Chem Phys 105:7034–7046

    Article  CAS  Google Scholar 

  54. Egorov SA, Stephens MD, Skinner JL (1996) Absorption line shapes and solvation dynamics of ch3i in supercritical ar. J Chem Phys 107:10485–10491

    Article  Google Scholar 

  55. Ladanyi BM, Stratt RM (1995) Short-time dynamics of solvation—Linear solvation theory for polar-solvents. J Phys Chem 99:2502–2511

    Article  CAS  Google Scholar 

  56. Ladanyi BM, Stratt RM (1996) Short-time dynamics of solvation: Relationship between polar and nonpolar solvation. J Phys Chem 100:1266–1282

    Article  CAS  Google Scholar 

  57. Woutersen S, Mu Y, Stock G, Hamm P (2001) Subpicosecond conformational dynamics of small peptides probed by two-dimensional vibrational spectroscopy. Proc Natl Acad Sci USA 98:11254

    Article  CAS  Google Scholar 

  58. Zanni MT, Asplund MC, Hochstrasser RM (2001) Two-dimensional heterodyned and stimulated infrared photon echoes of n-methylacetamide-d. J Chem Phys 114:4579–4590

    Article  CAS  Google Scholar 

  59. Woutersen S, Pfister R, Hamm P, Mu Y, Kosov DS, Stock G (2002) Peptide conformational heterogeneity revealed from nonlinear vibrational spectroscopy and molecular-dynamics simualtions. J Chem Phys 117:6833–6840

    Article  CAS  Google Scholar 

  60. Rubtsov IV, Wang J, Hochstrasser RM (2003) Vibrational coupling between amide-i and amide-a modes revealed by femtosecond two color infrared spectroscopy. J Phys Chem A 107:3384–3396

    Article  CAS  Google Scholar 

  61. DeCamp MF, DeFlores L, McCracken JM, Tokmakoff A, Kwac K, Cho M (2005) Amide i vibrational dynamics of n-methylacetamide in polar solvents: The role of electrostatic interactions. J Phys Chem B 109(21):11016–11026

    Article  CAS  Google Scholar 

  62. DeFlores LP, Ganim Z, Ackley SF, Chung HS, Tokmakoff A (2006) The anharmonic vibrational potential and relaxation pathways of the amide I and II modes of n-methylacetamide. J Phys Chem B 110(38):18973–18980

    Article  CAS  Google Scholar 

  63. Gregurick SK, Chaban GM, Gerber RB (2002) Ab initio and improved empirical potentials for the calculation of the anharmonic vibrational states and intramolecular mode coupling of n-methylacetamide. J Phys Chem A 106(37):8696–8707

    Article  CAS  Google Scholar 

  64. Kwac K, Cho M (2003) Molecualr dynamics simualtion study of n-methylacetamide in water. I. Amide I mode frequency fluctuation. J Chem Phys 119:2247–2255

    Article  CAS  Google Scholar 

  65. Schmidt JR, Corcelli SA, Skinner JL (2004) Ultrafast vibrational spectroscopy of water and aqueus n-methylacetamide. Comparison of different electronic structure/molecular dynamics approaches. J Chem Phys 121:8887–8896

    Article  CAS  Google Scholar 

  66. Hayashi T, Zhuang W, Mukamel S (2005) Electrostatic DFT map for the complete vibrational amide band of NMA. J Phys Chem A 109:9747–9759

    Article  CAS  Google Scholar 

  67. Fujisaki H, Zhang Y, Straub JE (2006) Time-dependent perturbation theory for vibrational energy relaxation and dephasing in peptides and proteins. J Chem Phys 124(14):144910

    Article  Google Scholar 

  68. Fujisaki H, Yagi K, Hirao K, Straub JE (2007) Quantum dynamics of n-methylacetamide studied by the vibrational configuration interaction method. Chem Phys Lett 443:6–11

    Article  CAS  Google Scholar 

  69. Goodyear G, Stratt RM (1996) The short time intramolecular dynamics of solutes in liquids. I. An instantaneous normal mode theory for friction. J Chem Phys 105:10050–10071

    Article  CAS  Google Scholar 

  70. Ladanyi BM, Stratt RM (1998) The short-time dynamics of vibrational relaxation in molecular liquids. J Phys Chem A 102:1068–1082

    Article  CAS  Google Scholar 

  71. Carpaneto G, Martello S, Toth P (1988) Algorithms and codes for the assigment problem. Ann Oper Res 13:193–223

    Article  Google Scholar 

  72. Nakamura M, Tamura K, Murakami S (1995) Isotope effects on thermodynamic properties: Mixtures of x(d2o or h2o) + (1 − x)ch3cn at 298.15 k. Thermochim Acta 253:127–136

    Article  CAS  Google Scholar 

  73. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  74. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    Article  CAS  Google Scholar 

  75. Pappu RV, Hart RK, Ponder JW (1998) Analysis and application of potential energy smoothing and search methods for global optimization. J Phys Chem B 102:9725–9742

    Article  CAS  Google Scholar 

  76. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford Science Publications, Oxford

  77. Svanberg M (1997) An improved leap-frog rotational algorithm. Mol Phys 92:1085

    CAS  Google Scholar 

  78. Rey-Lafon M, Forel MT, Garrigou-Lagrange C (1973) Discussion des modes normaux des groupements amides cis et trans partir des champs de force du δ-valrolactame et du n-methylacetamide. Spectr Acta 29A:471–486

    Article  CAS  Google Scholar 

  79. Ataka S, Takeuchi H, Tasumi M (1984) Infrared studies of the less stable cis form of n-methylformamide and n-methylacetamide in low-temperature nitrogen matrices and vibrational analyses of the trans and cis forms of these molecules. J Mol Struct 113:147–160

    Article  CAS  Google Scholar 

  80. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  81. Raff LM (1988) Projection methods for obtaining intramolecular energy-transfer rates from classical trajectory results—Application to 1,2-difluoroethane. J Chem Phys 89(9):5680–5691

    Article  CAS  Google Scholar 

  82. Kabadi VN, Rice BM (2004) Molecular dynamics simualtions of normal mode vibrational energy transfer in liquid nitromethane. J Phys Chem A 108:532–540

    Article  CAS  Google Scholar 

  83. Bell RJ, Dean P, Hibbins-Butler C (1970) localization of normal modes in vitreous silica, germania and beryllium fluoride. J Phys C: Solid St Phys 3:2111–2118

    Article  CAS  Google Scholar 

  84. Taraskin SN, Elliott SR (1999) Anharmonicity and localization of atomic vibrations in vitreous silica. Phys Rev B 59:8572–8585

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Ministerio de Educación y Ciencia of Spain under Project CTQ2007-66528/BQU and CONSOLIDER CSD2009-00038, by the Fundación Séneca del Centro de Coordinación de la Investigación de la Región de Murcia under Project 08735/PI/08, by the Universidad Nacional de Quilmes, and by CONICET. M.A.S. and M.H.F. both acknowledge fellowships provided by the Ministerio de Educación y Ciencia of Spain, and A.K. acknowledges a fellowship provided by CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Bastida.

Additional information

Published as part of the special issue celebrating theoretical and computational chemistry in Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalstein, A., Fernández-Alberti, S., Bastida, A. et al. Vibrational dynamics of polyatomic molecules in solution: assignment, time evolution and mixing of instantaneous normal modes. Theor Chem Acc 128, 769–782 (2011). https://doi.org/10.1007/s00214-010-0832-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0832-5

Keywords

Navigation