Skip to main content

Overcoming systematic DFT errors for hydrocarbon reaction energies

Abstract

Despite the widespread use and numerous successful applications of density functional theory, descriptions of hydrocarbon reaction energies remain problematic. Illustrative examples include large underestimation of energies associated with alkane bond separation reactions and poor general description of intramolecular dispersion in hydrocarbons (e.g., B3LYP, MAD = 14.1 kcal mol−1). More recent, but not readily availably functionals, along with efficient posteriori corrections, not only show considerable improvement in the energy description of hydrocarbons but also help identify the sources of error in traditional DFT. Interactions in branched alkanes and compact hydrocarbons are adequately mimicked by systems compressed below their typical van der Waals distances. At these distances, standard DFT exchange functionals are overly repulsive for non-bonded density overlaps, and significant improvement is offered by the long-range corrected exchange functionals (e.g., LC-BLYP0.33, MAD = 5.5 kcal mol−1). For those systems, the neglect of long-range dispersion is found to be a critical shortcoming, as well as “overlap dispersion”, for which non-negligible amounts are captured by the correlation functional. Accounting for the missing dispersion interactions is of key importance. Accordingly, most noteworthy improvements over standard functionals are obtained by using non-local van der Waals density functionals (e.g., LC-S-VV09, MAD = 3.6 kcal mol−1, rPW86-VV09, MAD = 5.8 kcal mol−1), a dispersion corrected double hybrid (B2PLYP-D, MAD = 2.5 kcal mol−1), or by the addition of an atom pairwise density-dependent dispersion correction to a standard functional (e.g., PBE-dDXDM, MAD = 0.8 kcal mol−1). To a lesser extent, the reduction of the delocalization error (e.g., MCY3, MAD = 6.3 kcal mol−1) or careful parameter fitting (e.g., M06-2X, MAD = 5.6 kcal mol−1) also lowers the errors.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Kohn W, Sham LJ (1965) Phys Rev 140(4):A1133–A1138

    Google Scholar 

  2. Jones RO, Gunnarsson O (1989) Rev Mod Phys 61:689–746

    CAS  Google Scholar 

  3. Kristyan S, Pulay P (1994) Chem Phys Lett 229(3):175–180

    CAS  Google Scholar 

  4. Perez-Jorda JM, Becke AD (1995) Chem Phys Lett 233(1–2):134–137

    CAS  Google Scholar 

  5. Zhang YK, Pan W, Yang WT (1997) J Chem Phys 107:7921–7925

    CAS  Google Scholar 

  6. Hobza P, Sponer J, Reschel T (1995) J Comput Chem 16(11):1315–1325

    CAS  Google Scholar 

  7. Patton DC, Pederson MR (1997) Phys Rev A 56(4):R2495–R2498

    CAS  Google Scholar 

  8. Milet A, Korona T, Moszynski R, Kochanski E (1999) J Chem Phys 111(17):7727–7735

    CAS  Google Scholar 

  9. Perez-Jorda JM, San-Fabian E, Perez-Jimenez AJ (1999) J Chem Phys 110(4):1916–1920

    CAS  Google Scholar 

  10. Tsuzuki S, Luthi HP (2001) J Chem Phys 114(9):3949–3957

    CAS  Google Scholar 

  11. Wu X, Vargas MC, Nayak S, Lotrich V, Scoles G (2001) J Chem Phys 115(19):8748–8757

    CAS  Google Scholar 

  12. Grimme S (2006) Angew Chem Int Ed 45(27):4460–4464

    CAS  Google Scholar 

  13. Wodrich MD, Corminboeuf C, Schleyer PvR (2006) Org Lett 8(17):3631–3634

    CAS  Google Scholar 

  14. Schreiner PR (2007) Angew Chem Int Ed 46(23):4217–4219

    CAS  Google Scholar 

  15. Gonthier JF, Wodrich MD, Steinmann SN, Corminboeuf C (2010) Org Lett 12(13):3070–3073

    CAS  Google Scholar 

  16. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106(3):1063–1079

    CAS  Google Scholar 

  17. Raghavachari K, Stefanov BB, Curtiss LA (1997) Mol Phys 91(3):555–559

    CAS  Google Scholar 

  18. Curtiss LA, Raghavachari K, Redfern PC, Pople JA (2000) J Chem Phys 112(17):7374–7383

    CAS  Google Scholar 

  19. Redfern PC, Zapol P, Curtiss LA, Raghavachari K (2000) J Phys Chem A 104(24):5850–5854

    CAS  Google Scholar 

  20. Saeys M, Reyniers MF, Marin GB, Van Speybroeck V, Waroquier M (2003) J Phys Chem A 107(43):9147–9159

    CAS  Google Scholar 

  21. Hehre WJ, Ditchfield R, Radom L, Pople JA (1970) J Am Chem Soc 92(16):4796–4801

    CAS  Google Scholar 

  22. Pople JA, Radom L, Hehre WJ (1971) J Am Chem Soc 93(2):289–300

    CAS  Google Scholar 

  23. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  24. Wodrich MD, Wannere CS, Mo Y, Jarowski PD, Houk KN, Schleyer PvR (2007) Chem Eur J 13(27):7731–7744

    CAS  Google Scholar 

  25. Karton A, Gruzman D, Martin JML (2009) J Phys Chem A 113:8434–8447

    CAS  Google Scholar 

  26. Song J-W, Tsuneda T, Sato T, Hirao K (2010) Org Lett 12(7):1440–1443

    CAS  Google Scholar 

  27. Allen TL (1958) J Chem Phys 29(4):951–952

    CAS  Google Scholar 

  28. Allen TL (1959) J Chem Phys 31(4):1039–1049

    CAS  Google Scholar 

  29. Pitzer KS, Catalano E (1956) J Am Chem Soc 78(19):4844–4846

    CAS  Google Scholar 

  30. Pitzer KS (1959) Adv Chem Phys 2:59–83

    CAS  Google Scholar 

  31. London F (1937) Trans Faraday Soc 33:8b–26

    Google Scholar 

  32. Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9(26):3397–3406

    CAS  Google Scholar 

  33. Wodrich MD, Jana DF, Schleyer PvR, Corminboeuf C (2008) J Phys Chem A 112(45):11495–11500

    CAS  Google Scholar 

  34. Karton A, Tarnopolsky A, Lamere J-F, Schatz GC, Martin JML (2008) J Phys Chem A 112(50):12868–12886

    CAS  Google Scholar 

  35. Steinmann SN, Csonka G, Corminboeuf C (2009) J Chem Theory Comput 5(11):2950–2958

    CAS  Google Scholar 

  36. Shamov GA, Budzelaar PHM, Schreckenbach G (2010) J Chem Theory Comput 6(2):477–490

    CAS  Google Scholar 

  37. Steinmann SN, Corminboeuf C (2010) J Chem Theory Comput 6(7):1990–2001

    CAS  Google Scholar 

  38. Zhao Y, Truhlar DG (2006) Org Lett 8(25):5753–5755

    CAS  Google Scholar 

  39. Feng Y, Liu L, Wang J-T, Huang H, Guo Q-X (2003) J Chem Inf Comput Sci 43:2005

    CAS  Google Scholar 

  40. Yao F, Xiao-Yu D, Yi-Min W, Lei L, Qing-Xiang G (2005) Chin J Chem 23(5):474–482

    Google Scholar 

  41. Coote ML, Pross A, Radom L (2004) In: Brandas EJ, Kryachko ES (eds) Fundamental world of quantum chemistry, vol III. Kluwer, The Netherlands, p 563

    Google Scholar 

  42. Izgorodina EI, Coote ML, Radom L (2005) J Phys Chem A 109(33):7558–7566

    CAS  Google Scholar 

  43. Check CE, Gilbert TM (2005) J Org Chem 70(24):9828–9834

    CAS  Google Scholar 

  44. Zhao Y, Truhlar DG (2008) J Phys Chem A 112(6):1095–1099

    CAS  Google Scholar 

  45. Becke AD (1993) J Chem Phys 98(2):1372–1377

    CAS  Google Scholar 

  46. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98(45):11623–11627

    CAS  Google Scholar 

  47. Check CE, Gilbert TM (2005) J Org Chem 70:9828–9834

    CAS  Google Scholar 

  48. Woodcock HL, Schaefer HF, Schreiner PR (2002) J Phys Chem A 106(49):11923–11931

    CAS  Google Scholar 

  49. Schreiner PR, Fokin AA, Pascal RA, de Meijere A (2006) Org Lett 8(17):3635–3638

    CAS  Google Scholar 

  50. Wodrich MD, Corminboeuf C, Schreiner PR, Fokin AA, Schleyer PvR (2007) Org Lett 9(10):1851–1854

    CAS  Google Scholar 

  51. Fermi E, Amaldi E (1934) Accad Ital Rome 6:119

    CAS  Google Scholar 

  52. Perdew JP (1979) Chem Phys Lett 64(1):127–130

    CAS  Google Scholar 

  53. Perdew JP, Zunger A (1981) Phys Rev B 23(10):5048–5079

    CAS  Google Scholar 

  54. Mori-Sanchez P, Cohen AJ, Yang W (2006) J Chem Phys 125(20):201102

    Google Scholar 

  55. Ruzsinszky A, Perdew JP, Csonka GI, Vydrov OA, Scuseria GE (2007) J Chem Phys 126(10):104102–104108

    Google Scholar 

  56. Cohen AJ, Mori-Sanchez P, Yang W (2008) Science 321(5890):792–794

    CAS  Google Scholar 

  57. Mori-Sanchez P, Cohen AJ, Yang W (2008) Phys Rev Lett 100(14):146401

    Google Scholar 

  58. Brittain DRB, Lin CY, Gilbert ATB, Izgorodina EI, Gill PMW, Coote ML (2009) Phys Chem Chem Phys 11(8):1138–1142

    CAS  Google Scholar 

  59. Grimme S (2010) Org Lett. doi:10.1021/ol1016417

  60. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92(24):246401

    CAS  Google Scholar 

  61. Vydrov OA, Van Voorhis T (2009) Phys Rev Lett 103(6):063004

    Google Scholar 

  62. Vydrov OA, Voorhis TV (2010) J Chem Phys 132(16):164113

    Google Scholar 

  63. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120(18):8425–8433

    CAS  Google Scholar 

  64. Henderson TM, Janesko BG, Scuseria GE (2008) J Chem Phys 128(19):194105

    Google Scholar 

  65. Rohrdanz MA, Martins KM, Herbert JM (2009) J Chem Phys 130(5):054112

    Google Scholar 

  66. Cohen AJ, Mori-Sanchez P, Yang W (2007) J Chem Phys 126(19):191109

    Google Scholar 

  67. Zhao Y, Truhlar D (2008) Theor Chem Acc 120(1):215–241

    CAS  Google Scholar 

  68. Grimme S (2006) J Comput Chem 27(15):1787–1799

    CAS  Google Scholar 

  69. Grimme S (2006) J Chem Phys 124(3):034108

    Google Scholar 

  70. Afeefy HY, Liebman JF, Stein SE (2010) Neutral thermochemical data. In: Linstrom PJ, Mallard WG (eds) Nist chemistry webbook, nist standard reference database number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899

  71. Kreig H, Grimme S (2010) Mol Phys. doi:10.1080/00268976.2010.519729

  72. Adler TB, Knizia G, Werner H-J (2007) J Chem Phys 127(22):221106

    Google Scholar 

  73. Marchetti O, Werner H-J (2009) J Phys Chem A 113(43):11580–11585

    CAS  Google Scholar 

  74. Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2009) Molpro, version 2009.1, a package of ab initio programs

  75. Thom H, Dunning J (1989) J Chem Phys 90(2):1007–1023

    Google Scholar 

  76. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865–3868

    CAS  Google Scholar 

  77. Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105(22):9982–9985

    CAS  Google Scholar 

  78. Adamo C, Barone V (1999) J Chem Phys 110(13):6158–6170

    CAS  Google Scholar 

  79. Becke AD (1988) Phys Rev A 38(6):3098

    CAS  Google Scholar 

  80. Perdew JP, Wang Y (1986) Phys Rev B 33(12):8800–8802

    Google Scholar 

  81. Perdew JP, Yue W (1989) Phys Rev B 40(5):3399

    Google Scholar 

  82. Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785

    CAS  Google Scholar 

  83. Becke AD (1993) J Chem Phys 98(7):5648–5652

    CAS  Google Scholar 

  84. Slater JC (1951) Phys Rev 81(3):385

    CAS  Google Scholar 

  85. Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58(8):1200–1211

    CAS  Google Scholar 

  86. Murray EaD, Lee K, Langreth DC (2009) J Chem Theory Comput 5(10):2754–2762

    CAS  Google Scholar 

  87. Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio Jr RA, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Voorhis TV, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu C-P, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL III, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF III, Kong J, Krylov AI, Gill PMW, Head-Gordon M (2006) Phys Chem Chem Phys 8(27):3172–3191

    CAS  Google Scholar 

  88. Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118(18):8207–8215

    CAS  Google Scholar 

  89. Heyd J, Scuseria GE, Ernzerhof M (2006) J Chem Phys 124(21):219906

    Google Scholar 

  90. Revision A.1, Gaussian, Inc., Wallingford CT, 2009

  91. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393(1–3):51–57

    CAS  Google Scholar 

  92. Mori-Sanchez P, Cohen AJ, Yang W (2006) J Chem Phys 124(9):091102

    Google Scholar 

  93. CADPAC, The Cambridge Analytic Derivatives Package

  94. f functions were omitted in CADPAC computations of the anthracene dimerization reaction and the folding of C22H46 for technical reasons

  95. Zhang Y, Yang W (1998) Phys Rev Lett 80(4):890

    CAS  Google Scholar 

  96. Perdew JP, Wang Y (1992) Phys Rev B 45(23):13244–13249

    Google Scholar 

  97. Savin A, Flad H-J (1995) Int J Quantum Chem 56(4):327–332

    CAS  Google Scholar 

  98. Savin A (1996) On degeneracy, near-degeneracy and density functional theory. In: Seminario JM (ed) Theoretical and computational chemistry, vol 4. Elsevier, Amsterdam, pp 327–357

  99. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115(8):3540–3544

    CAS  Google Scholar 

  100. Toulouse J, Colonna F, Savin A (2004) Phys Rev A 70(6):062505

    Google Scholar 

  101. Henderson TM, Izmaylov AF, Scuseria GE, Savin A (2007) J Chem Phys 127(22):221103

    Google Scholar 

  102. Song J-W, Tokura S, Sato T, Watson MA, Hirao K (2007) J Chem Phys 127(15):154109

    Google Scholar 

  103. Song J-W, Watson MA, Hirao K (2009) J Chem Phys 131(14):144108

    Google Scholar 

  104. Toulouse J, Colonna F, Savin A (2005) J Chem Phys 122(1):014110

    Google Scholar 

  105. Ernzerhof M, Perdew JP (1998) J Chem Phys 109(9):3313–3320

    CAS  Google Scholar 

  106. Vydrov OA, Scuseria GE (2006) J Chem Phys 125(23):234109

    Google Scholar 

  107. Weintraub E, Henderson TM, Scuseria GE (2009) J Chem Theory Comput 5(4):754–762

    CAS  Google Scholar 

  108. Johnson ER, Becke AD (2005) J Chem Phys 123(2):024101

    Google Scholar 

  109. Becke AD, Johnson ER (2005) J Chem Phys 123(15):154101

    Google Scholar 

  110. Becke AD, Johnson ER (2005) J Chem Phys 122(15):154104

    Google Scholar 

  111. Becke AD, Johnson ER (2006) J Chem Phys 124(1):014104

    Google Scholar 

  112. Johnson ER, Becke AD (2006) J Chem Phys 124(17):174104

    Google Scholar 

  113. Becke AD, Johnson ER (2007) J Chem Phys 127(15):154108

    Google Scholar 

  114. Becke AD, Johnson ER (2007) J Chem Phys 127(12):124108

    Google Scholar 

  115. Tang KT, Toennies JP (1984) J Chem Phys 80(8):3726–3741

    CAS  Google Scholar 

  116. Proynov E, Gan Z, Kong J (2008) Chem Phys Lett 455(1–3):103–109

    CAS  Google Scholar 

  117. Kong J, Gan Z, Proynov E, Freindorf M, Furlani TR (2009) Phys Rev A 79(4):042510

    Google Scholar 

  118. Becke AD, Roussel MR (1989) Phys Rev A 39(8):3761

    CAS  Google Scholar 

  119. Bultinck P, Alsenoy CV, Ayers PW, Carbo-Dorca R (2007) J Chem Phys 126(14):144111

    Google Scholar 

  120. Bohm H-J, Ahlrichs R (1982) J Chem Phys 77(4):2028–2034

    Google Scholar 

  121. Sheng XW, Li P, Tang KT (2009) J Chem Phys 130(17):174310

    CAS  Google Scholar 

  122. Douketis C, Scoles G, Marchetti S, Zen M, Thakkar AJ (1982) J Chem Phys 76(6):3057–3063

    CAS  Google Scholar 

  123. Tang KT, Toennies JP, Yiu CL (1995) Phys Rev Lett 74(9):1546

    CAS  Google Scholar 

  124. Martin WC, Musgrove A, Kotochigova S, Sansonetti JE (2003) Ground levels and ionization energies for the neutral atoms. In: Drake GWF (ed) Physical reference data, nist standard reference database number 111. National Institute of Standards and Technology, Gaithersburg MD, 20899

  125. Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102(7):073005

    Google Scholar 

  126. Tkatchenko A, Robert A, DiStasio J, Head-Gordon M, Scheffler M (2009) J Chem Phys 131(9):094106

    Google Scholar 

  127. Mayer I, Salvador P (2004) Chem Phys Lett 383(3–4):368–375

    CAS  Google Scholar 

  128. Mulliken RS (1955) J Chem Phys 23(10):1841–1846

    CAS  Google Scholar 

  129. Song J-W, Hirosawa T, Tsuneda T, Hirao K (2007) J Chem Phys 126(15):154105–154107

    Google Scholar 

  130. Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) J Chem Phys 125(7):074106

    Google Scholar 

  131. Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108(21):4786–4791

    CAS  Google Scholar 

  132. Kamiya M, Tsuneda T, Hirao K (2002) J Chem Phys 117(13):6010–6015

    CAS  Google Scholar 

  133. Sato T, Tsuneda T, Hirao K (2005) Mol Phys 103(6):1151–1164

    CAS  Google Scholar 

  134. Sato T, Tsuneda T, Hirao K (2005) J Chem Phys 123(10):104307

    Google Scholar 

  135. Angyan JG, Gerber IC, Savin A, Toulouse J (2005) Phys Rev A 72(1):012510

    Google Scholar 

  136. Gerber IC, Angyan JG (2005) Chem Phys Lett 416(4–6):370–375

    CAS  Google Scholar 

  137. Goll E, Werner HJ, Stoll H (2005) Phys Chem Chem Phys 7(23):3917–3923

    CAS  Google Scholar 

  138. Wu Q, Yang W (2002) J Chem Phys 116(2):515–524

    CAS  Google Scholar 

  139. Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) J Chem Phys 114(12):5149–5155

    CAS  Google Scholar 

  140. Meijer EJ, Sprik M (1996) J Chem Phys 105(19):8684–8689

    CAS  Google Scholar 

  141. Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132(15):154104

    Google Scholar 

  142. NIST Computational Chemistry Comparison and Benchmark Database, http://srdata.nist.gov/cccbdb

  143. Jurecka P, Sponer J, Cerny J, Hobza P (2006) Phys Chem Chem Phys 8(17):1985–1993

    CAS  Google Scholar 

  144. Lacks DJ, Gordon RG (1993) Phys Rev A 47(6):4681

    CAS  Google Scholar 

  145. Wesolowski TA, Parisel O, Ellinger Y, Weber J (1997) J Phys Chem A 101(42):7818–7825

    CAS  Google Scholar 

  146. Zhang Y, Pan W, Yang W (1997) J Chem Phys 107(19):7921–7925

    CAS  Google Scholar 

  147. Kannemann FO, Becke AD (2009) J Chem Theory Comput 5(4):719–727

    CAS  Google Scholar 

  148. Grafova L, Pitonak M, Rezac J, Hobza P (2010) J Chem Theory Comput:null-null

  149. Sherrill CD, Takatani T, Hohenstein EG (2009) J Phys Chem A 113(38):10146–10159

    CAS  Google Scholar 

  150. Wang F-F, Jenness G, Al-Saidi WA, Jordan KD (2010) J Chem Phys 132(13):134303

    Google Scholar 

  151. Grimme S (2004) Chem Eur J 10(14):3423–3429

    CAS  Google Scholar 

  152. Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94(7):1887–1930

    CAS  Google Scholar 

  153. Jeziorska M, Bogumil J, Jiri C (1987) Int J Quantum Chem 32(2):149–164

    CAS  Google Scholar 

  154. Moszynski R, Heijmen TGA, Jeziorski B (1996) Mol Phys 88(3):741–758

    CAS  Google Scholar 

  155. Stroppa A, Kresse G (2008) New J Phys 10(6):063020

    Google Scholar 

  156. Pernal K, Podeszwa R, Patkowski K, Szalewicz K (2009) Phys Rev Lett 103(26):4

    Google Scholar 

Download references

Acknowledgments

C.C. acknowledges the Sandoz family foundation, the Swiss NSF Grant 200021_121577/1, and EPFL for financial support. We are grateful to Aron Cohen for providing the binary version of CADPAC 6.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemence Corminboeuf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 817 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Steinmann, S.N., Wodrich, M.D. & Corminboeuf, C. Overcoming systematic DFT errors for hydrocarbon reaction energies. Theor Chem Acc 127, 429–442 (2010). https://doi.org/10.1007/s00214-010-0818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0818-3

Keywords

  • Density functional theory
  • Weak intramolecular interactions
  • Hydrocarbon energies