Advertisement

Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 429–442 | Cite as

Overcoming systematic DFT errors for hydrocarbon reaction energies

  • Stephan N. Steinmann
  • Matthew D. Wodrich
  • Clemence CorminboeufEmail author
Feature Article

Abstract

Despite the widespread use and numerous successful applications of density functional theory, descriptions of hydrocarbon reaction energies remain problematic. Illustrative examples include large underestimation of energies associated with alkane bond separation reactions and poor general description of intramolecular dispersion in hydrocarbons (e.g., B3LYP, MAD = 14.1 kcal mol−1). More recent, but not readily availably functionals, along with efficient posteriori corrections, not only show considerable improvement in the energy description of hydrocarbons but also help identify the sources of error in traditional DFT. Interactions in branched alkanes and compact hydrocarbons are adequately mimicked by systems compressed below their typical van der Waals distances. At these distances, standard DFT exchange functionals are overly repulsive for non-bonded density overlaps, and significant improvement is offered by the long-range corrected exchange functionals (e.g., LC-BLYP0.33, MAD = 5.5 kcal mol−1). For those systems, the neglect of long-range dispersion is found to be a critical shortcoming, as well as “overlap dispersion”, for which non-negligible amounts are captured by the correlation functional. Accounting for the missing dispersion interactions is of key importance. Accordingly, most noteworthy improvements over standard functionals are obtained by using non-local van der Waals density functionals (e.g., LC-S-VV09, MAD = 3.6 kcal mol−1, rPW86-VV09, MAD = 5.8 kcal mol−1), a dispersion corrected double hybrid (B2PLYP-D, MAD = 2.5 kcal mol−1), or by the addition of an atom pairwise density-dependent dispersion correction to a standard functional (e.g., PBE-dDXDM, MAD = 0.8 kcal mol−1). To a lesser extent, the reduction of the delocalization error (e.g., MCY3, MAD = 6.3 kcal mol−1) or careful parameter fitting (e.g., M06-2X, MAD = 5.6 kcal mol−1) also lowers the errors.

Keywords

Density functional theory Weak intramolecular interactions Hydrocarbon energies 

Notes

Acknowledgments

C.C. acknowledges the Sandoz family foundation, the Swiss NSF Grant 200021_121577/1, and EPFL for financial support. We are grateful to Aron Cohen for providing the binary version of CADPAC 6.5.

Supplementary material

214_2010_818_MOESM1_ESM.doc (817 kb)
Supplementary material 1 (DOC 817 kb)

References

  1. 1.
    Kohn W, Sham LJ (1965) Phys Rev 140(4):A1133–A1138Google Scholar
  2. 2.
    Jones RO, Gunnarsson O (1989) Rev Mod Phys 61:689–746Google Scholar
  3. 3.
    Kristyan S, Pulay P (1994) Chem Phys Lett 229(3):175–180Google Scholar
  4. 4.
    Perez-Jorda JM, Becke AD (1995) Chem Phys Lett 233(1–2):134–137Google Scholar
  5. 5.
    Zhang YK, Pan W, Yang WT (1997) J Chem Phys 107:7921–7925Google Scholar
  6. 6.
    Hobza P, Sponer J, Reschel T (1995) J Comput Chem 16(11):1315–1325Google Scholar
  7. 7.
    Patton DC, Pederson MR (1997) Phys Rev A 56(4):R2495–R2498Google Scholar
  8. 8.
    Milet A, Korona T, Moszynski R, Kochanski E (1999) J Chem Phys 111(17):7727–7735Google Scholar
  9. 9.
    Perez-Jorda JM, San-Fabian E, Perez-Jimenez AJ (1999) J Chem Phys 110(4):1916–1920Google Scholar
  10. 10.
    Tsuzuki S, Luthi HP (2001) J Chem Phys 114(9):3949–3957Google Scholar
  11. 11.
    Wu X, Vargas MC, Nayak S, Lotrich V, Scoles G (2001) J Chem Phys 115(19):8748–8757Google Scholar
  12. 12.
    Grimme S (2006) Angew Chem Int Ed 45(27):4460–4464Google Scholar
  13. 13.
    Wodrich MD, Corminboeuf C, Schleyer PvR (2006) Org Lett 8(17):3631–3634Google Scholar
  14. 14.
    Schreiner PR (2007) Angew Chem Int Ed 46(23):4217–4219Google Scholar
  15. 15.
    Gonthier JF, Wodrich MD, Steinmann SN, Corminboeuf C (2010) Org Lett 12(13):3070–3073Google Scholar
  16. 16.
    Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106(3):1063–1079Google Scholar
  17. 17.
    Raghavachari K, Stefanov BB, Curtiss LA (1997) Mol Phys 91(3):555–559Google Scholar
  18. 18.
    Curtiss LA, Raghavachari K, Redfern PC, Pople JA (2000) J Chem Phys 112(17):7374–7383Google Scholar
  19. 19.
    Redfern PC, Zapol P, Curtiss LA, Raghavachari K (2000) J Phys Chem A 104(24):5850–5854Google Scholar
  20. 20.
    Saeys M, Reyniers MF, Marin GB, Van Speybroeck V, Waroquier M (2003) J Phys Chem A 107(43):9147–9159Google Scholar
  21. 21.
    Hehre WJ, Ditchfield R, Radom L, Pople JA (1970) J Am Chem Soc 92(16):4796–4801Google Scholar
  22. 22.
    Pople JA, Radom L, Hehre WJ (1971) J Am Chem Soc 93(2):289–300Google Scholar
  23. 23.
    Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  24. 24.
    Wodrich MD, Wannere CS, Mo Y, Jarowski PD, Houk KN, Schleyer PvR (2007) Chem Eur J 13(27):7731–7744Google Scholar
  25. 25.
    Karton A, Gruzman D, Martin JML (2009) J Phys Chem A 113:8434–8447Google Scholar
  26. 26.
    Song J-W, Tsuneda T, Sato T, Hirao K (2010) Org Lett 12(7):1440–1443Google Scholar
  27. 27.
    Allen TL (1958) J Chem Phys 29(4):951–952Google Scholar
  28. 28.
    Allen TL (1959) J Chem Phys 31(4):1039–1049Google Scholar
  29. 29.
    Pitzer KS, Catalano E (1956) J Am Chem Soc 78(19):4844–4846Google Scholar
  30. 30.
    Pitzer KS (1959) Adv Chem Phys 2:59–83Google Scholar
  31. 31.
    London F (1937) Trans Faraday Soc 33:8b–26Google Scholar
  32. 32.
    Schwabe T, Grimme S (2007) Phys Chem Chem Phys 9(26):3397–3406Google Scholar
  33. 33.
    Wodrich MD, Jana DF, Schleyer PvR, Corminboeuf C (2008) J Phys Chem A 112(45):11495–11500Google Scholar
  34. 34.
    Karton A, Tarnopolsky A, Lamere J-F, Schatz GC, Martin JML (2008) J Phys Chem A 112(50):12868–12886Google Scholar
  35. 35.
    Steinmann SN, Csonka G, Corminboeuf C (2009) J Chem Theory Comput 5(11):2950–2958Google Scholar
  36. 36.
    Shamov GA, Budzelaar PHM, Schreckenbach G (2010) J Chem Theory Comput 6(2):477–490Google Scholar
  37. 37.
    Steinmann SN, Corminboeuf C (2010) J Chem Theory Comput 6(7):1990–2001Google Scholar
  38. 38.
    Zhao Y, Truhlar DG (2006) Org Lett 8(25):5753–5755Google Scholar
  39. 39.
    Feng Y, Liu L, Wang J-T, Huang H, Guo Q-X (2003) J Chem Inf Comput Sci 43:2005Google Scholar
  40. 40.
    Yao F, Xiao-Yu D, Yi-Min W, Lei L, Qing-Xiang G (2005) Chin J Chem 23(5):474–482Google Scholar
  41. 41.
    Coote ML, Pross A, Radom L (2004) In: Brandas EJ, Kryachko ES (eds) Fundamental world of quantum chemistry, vol III. Kluwer, The Netherlands, p 563Google Scholar
  42. 42.
    Izgorodina EI, Coote ML, Radom L (2005) J Phys Chem A 109(33):7558–7566Google Scholar
  43. 43.
    Check CE, Gilbert TM (2005) J Org Chem 70(24):9828–9834Google Scholar
  44. 44.
    Zhao Y, Truhlar DG (2008) J Phys Chem A 112(6):1095–1099Google Scholar
  45. 45.
    Becke AD (1993) J Chem Phys 98(2):1372–1377Google Scholar
  46. 46.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98(45):11623–11627Google Scholar
  47. 47.
    Check CE, Gilbert TM (2005) J Org Chem 70:9828–9834Google Scholar
  48. 48.
    Woodcock HL, Schaefer HF, Schreiner PR (2002) J Phys Chem A 106(49):11923–11931Google Scholar
  49. 49.
    Schreiner PR, Fokin AA, Pascal RA, de Meijere A (2006) Org Lett 8(17):3635–3638Google Scholar
  50. 50.
    Wodrich MD, Corminboeuf C, Schreiner PR, Fokin AA, Schleyer PvR (2007) Org Lett 9(10):1851–1854Google Scholar
  51. 51.
    Fermi E, Amaldi E (1934) Accad Ital Rome 6:119Google Scholar
  52. 52.
    Perdew JP (1979) Chem Phys Lett 64(1):127–130Google Scholar
  53. 53.
    Perdew JP, Zunger A (1981) Phys Rev B 23(10):5048–5079Google Scholar
  54. 54.
    Mori-Sanchez P, Cohen AJ, Yang W (2006) J Chem Phys 125(20):201102Google Scholar
  55. 55.
    Ruzsinszky A, Perdew JP, Csonka GI, Vydrov OA, Scuseria GE (2007) J Chem Phys 126(10):104102–104108Google Scholar
  56. 56.
    Cohen AJ, Mori-Sanchez P, Yang W (2008) Science 321(5890):792–794Google Scholar
  57. 57.
    Mori-Sanchez P, Cohen AJ, Yang W (2008) Phys Rev Lett 100(14):146401Google Scholar
  58. 58.
    Brittain DRB, Lin CY, Gilbert ATB, Izgorodina EI, Gill PMW, Coote ML (2009) Phys Chem Chem Phys 11(8):1138–1142Google Scholar
  59. 59.
    Grimme S (2010) Org Lett. doi: 10.1021/ol1016417
  60. 60.
    Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92(24):246401Google Scholar
  61. 61.
    Vydrov OA, Van Voorhis T (2009) Phys Rev Lett 103(6):063004Google Scholar
  62. 62.
    Vydrov OA, Voorhis TV (2010) J Chem Phys 132(16):164113Google Scholar
  63. 63.
    Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120(18):8425–8433Google Scholar
  64. 64.
    Henderson TM, Janesko BG, Scuseria GE (2008) J Chem Phys 128(19):194105Google Scholar
  65. 65.
    Rohrdanz MA, Martins KM, Herbert JM (2009) J Chem Phys 130(5):054112Google Scholar
  66. 66.
    Cohen AJ, Mori-Sanchez P, Yang W (2007) J Chem Phys 126(19):191109Google Scholar
  67. 67.
    Zhao Y, Truhlar D (2008) Theor Chem Acc 120(1):215–241Google Scholar
  68. 68.
    Grimme S (2006) J Comput Chem 27(15):1787–1799Google Scholar
  69. 69.
    Grimme S (2006) J Chem Phys 124(3):034108Google Scholar
  70. 70.
    Afeefy HY, Liebman JF, Stein SE (2010) Neutral thermochemical data. In: Linstrom PJ, Mallard WG (eds) Nist chemistry webbook, nist standard reference database number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899Google Scholar
  71. 71.
    Kreig H, Grimme S (2010) Mol Phys. doi: 10.1080/00268976.2010.519729
  72. 72.
    Adler TB, Knizia G, Werner H-J (2007) J Chem Phys 127(22):221106Google Scholar
  73. 73.
    Marchetti O, Werner H-J (2009) J Phys Chem A 113(43):11580–11585Google Scholar
  74. 74.
    Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2009) Molpro, version 2009.1, a package of ab initio programsGoogle Scholar
  75. 75.
    Thom H, Dunning J (1989) J Chem Phys 90(2):1007–1023Google Scholar
  76. 76.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77(18):3865–3868Google Scholar
  77. 77.
    Perdew JP, Ernzerhof M, Burke K (1996) J Chem Phys 105(22):9982–9985Google Scholar
  78. 78.
    Adamo C, Barone V (1999) J Chem Phys 110(13):6158–6170Google Scholar
  79. 79.
    Becke AD (1988) Phys Rev A 38(6):3098Google Scholar
  80. 80.
    Perdew JP, Wang Y (1986) Phys Rev B 33(12):8800–8802Google Scholar
  81. 81.
    Perdew JP, Yue W (1989) Phys Rev B 40(5):3399Google Scholar
  82. 82.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37(2):785Google Scholar
  83. 83.
    Becke AD (1993) J Chem Phys 98(7):5648–5652Google Scholar
  84. 84.
    Slater JC (1951) Phys Rev 81(3):385Google Scholar
  85. 85.
    Vosko SH, Wilk L, Nusair M (1980) Can J Phys 58(8):1200–1211Google Scholar
  86. 86.
    Murray EaD, Lee K, Langreth DC (2009) J Chem Theory Comput 5(10):2754–2762Google Scholar
  87. 87.
    Shao Y, Molnar LF, Jung Y, Kussmann J, Ochsenfeld C, Brown ST, Gilbert ATB, Slipchenko LV, Levchenko SV, O’Neill DP, DiStasio Jr RA, Lochan RC, Wang T, Beran GJO, Besley NA, Herbert JM, Lin CY, Voorhis TV, Chien SH, Sodt A, Steele RP, Rassolov VA, Maslen PE, Korambath PP, Adamson RD, Austin B, Baker J, Byrd EFC, Dachsel H, Doerksen RJ, Dreuw A, Dunietz BD, Dutoi AD, Furlani TR, Gwaltney SR, Heyden A, Hirata S, Hsu C-P, Kedziora G, Khalliulin RZ, Klunzinger P, Lee AM, Lee MS, Liang W, Lotan I, Nair N, Peters B, Proynov EI, Pieniazek PA, Rhee YM, Ritchie J, Rosta E, Sherrill CD, Simmonett AC, Subotnik JE, Woodcock HL III, Zhang W, Bell AT, Chakraborty AK, Chipman DM, Keil FJ, Warshel A, Hehre WJ, Schaefer HF III, Kong J, Krylov AI, Gill PMW, Head-Gordon M (2006) Phys Chem Chem Phys 8(27):3172–3191Google Scholar
  88. 88.
    Heyd J, Scuseria GE, Ernzerhof M (2003) J Chem Phys 118(18):8207–8215Google Scholar
  89. 89.
    Heyd J, Scuseria GE, Ernzerhof M (2006) J Chem Phys 124(21):219906Google Scholar
  90. 90.
    Revision A.1, Gaussian, Inc., Wallingford CT, 2009Google Scholar
  91. 91.
    Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393(1–3):51–57Google Scholar
  92. 92.
    Mori-Sanchez P, Cohen AJ, Yang W (2006) J Chem Phys 124(9):091102Google Scholar
  93. 93.
    CADPAC, The Cambridge Analytic Derivatives PackageGoogle Scholar
  94. 94.
    f functions were omitted in CADPAC computations of the anthracene dimerization reaction and the folding of C22H46 for technical reasonsGoogle Scholar
  95. 95.
    Zhang Y, Yang W (1998) Phys Rev Lett 80(4):890Google Scholar
  96. 96.
    Perdew JP, Wang Y (1992) Phys Rev B 45(23):13244–13249Google Scholar
  97. 97.
    Savin A, Flad H-J (1995) Int J Quantum Chem 56(4):327–332Google Scholar
  98. 98.
    Savin A (1996) On degeneracy, near-degeneracy and density functional theory. In: Seminario JM (ed) Theoretical and computational chemistry, vol 4. Elsevier, Amsterdam, pp 327–357Google Scholar
  99. 99.
    Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115(8):3540–3544Google Scholar
  100. 100.
    Toulouse J, Colonna F, Savin A (2004) Phys Rev A 70(6):062505Google Scholar
  101. 101.
    Henderson TM, Izmaylov AF, Scuseria GE, Savin A (2007) J Chem Phys 127(22):221103Google Scholar
  102. 102.
    Song J-W, Tokura S, Sato T, Watson MA, Hirao K (2007) J Chem Phys 127(15):154109Google Scholar
  103. 103.
    Song J-W, Watson MA, Hirao K (2009) J Chem Phys 131(14):144108Google Scholar
  104. 104.
    Toulouse J, Colonna F, Savin A (2005) J Chem Phys 122(1):014110Google Scholar
  105. 105.
    Ernzerhof M, Perdew JP (1998) J Chem Phys 109(9):3313–3320Google Scholar
  106. 106.
    Vydrov OA, Scuseria GE (2006) J Chem Phys 125(23):234109Google Scholar
  107. 107.
    Weintraub E, Henderson TM, Scuseria GE (2009) J Chem Theory Comput 5(4):754–762Google Scholar
  108. 108.
    Johnson ER, Becke AD (2005) J Chem Phys 123(2):024101Google Scholar
  109. 109.
    Becke AD, Johnson ER (2005) J Chem Phys 123(15):154101Google Scholar
  110. 110.
    Becke AD, Johnson ER (2005) J Chem Phys 122(15):154104Google Scholar
  111. 111.
    Becke AD, Johnson ER (2006) J Chem Phys 124(1):014104Google Scholar
  112. 112.
    Johnson ER, Becke AD (2006) J Chem Phys 124(17):174104Google Scholar
  113. 113.
    Becke AD, Johnson ER (2007) J Chem Phys 127(15):154108Google Scholar
  114. 114.
    Becke AD, Johnson ER (2007) J Chem Phys 127(12):124108Google Scholar
  115. 115.
    Tang KT, Toennies JP (1984) J Chem Phys 80(8):3726–3741Google Scholar
  116. 116.
    Proynov E, Gan Z, Kong J (2008) Chem Phys Lett 455(1–3):103–109Google Scholar
  117. 117.
    Kong J, Gan Z, Proynov E, Freindorf M, Furlani TR (2009) Phys Rev A 79(4):042510Google Scholar
  118. 118.
    Becke AD, Roussel MR (1989) Phys Rev A 39(8):3761Google Scholar
  119. 119.
    Bultinck P, Alsenoy CV, Ayers PW, Carbo-Dorca R (2007) J Chem Phys 126(14):144111Google Scholar
  120. 120.
    Bohm H-J, Ahlrichs R (1982) J Chem Phys 77(4):2028–2034Google Scholar
  121. 121.
    Sheng XW, Li P, Tang KT (2009) J Chem Phys 130(17):174310Google Scholar
  122. 122.
    Douketis C, Scoles G, Marchetti S, Zen M, Thakkar AJ (1982) J Chem Phys 76(6):3057–3063Google Scholar
  123. 123.
    Tang KT, Toennies JP, Yiu CL (1995) Phys Rev Lett 74(9):1546Google Scholar
  124. 124.
    Martin WC, Musgrove A, Kotochigova S, Sansonetti JE (2003) Ground levels and ionization energies for the neutral atoms. In: Drake GWF (ed) Physical reference data, nist standard reference database number 111. National Institute of Standards and Technology, Gaithersburg MD, 20899Google Scholar
  125. 125.
    Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102(7):073005Google Scholar
  126. 126.
    Tkatchenko A, Robert A, DiStasio J, Head-Gordon M, Scheffler M (2009) J Chem Phys 131(9):094106Google Scholar
  127. 127.
    Mayer I, Salvador P (2004) Chem Phys Lett 383(3–4):368–375Google Scholar
  128. 128.
    Mulliken RS (1955) J Chem Phys 23(10):1841–1846Google Scholar
  129. 129.
    Song J-W, Hirosawa T, Tsuneda T, Hirao K (2007) J Chem Phys 126(15):154105–154107Google Scholar
  130. 130.
    Vydrov OA, Heyd J, Krukau AV, Scuseria GE (2006) J Chem Phys 125(7):074106Google Scholar
  131. 131.
    Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108(21):4786–4791Google Scholar
  132. 132.
    Kamiya M, Tsuneda T, Hirao K (2002) J Chem Phys 117(13):6010–6015Google Scholar
  133. 133.
    Sato T, Tsuneda T, Hirao K (2005) Mol Phys 103(6):1151–1164Google Scholar
  134. 134.
    Sato T, Tsuneda T, Hirao K (2005) J Chem Phys 123(10):104307Google Scholar
  135. 135.
    Angyan JG, Gerber IC, Savin A, Toulouse J (2005) Phys Rev A 72(1):012510Google Scholar
  136. 136.
    Gerber IC, Angyan JG (2005) Chem Phys Lett 416(4–6):370–375Google Scholar
  137. 137.
    Goll E, Werner HJ, Stoll H (2005) Phys Chem Chem Phys 7(23):3917–3923Google Scholar
  138. 138.
    Wu Q, Yang W (2002) J Chem Phys 116(2):515–524Google Scholar
  139. 139.
    Elstner M, Hobza P, Frauenheim T, Suhai S, Kaxiras E (2001) J Chem Phys 114(12):5149–5155Google Scholar
  140. 140.
    Meijer EJ, Sprik M (1996) J Chem Phys 105(19):8684–8689Google Scholar
  141. 141.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) J Chem Phys 132(15):154104Google Scholar
  142. 142.
    NIST Computational Chemistry Comparison and Benchmark Database, http://srdata.nist.gov/cccbdb
  143. 143.
    Jurecka P, Sponer J, Cerny J, Hobza P (2006) Phys Chem Chem Phys 8(17):1985–1993Google Scholar
  144. 144.
    Lacks DJ, Gordon RG (1993) Phys Rev A 47(6):4681Google Scholar
  145. 145.
    Wesolowski TA, Parisel O, Ellinger Y, Weber J (1997) J Phys Chem A 101(42):7818–7825Google Scholar
  146. 146.
    Zhang Y, Pan W, Yang W (1997) J Chem Phys 107(19):7921–7925Google Scholar
  147. 147.
    Kannemann FO, Becke AD (2009) J Chem Theory Comput 5(4):719–727Google Scholar
  148. 148.
    Grafova L, Pitonak M, Rezac J, Hobza P (2010) J Chem Theory Comput:null-nullGoogle Scholar
  149. 149.
    Sherrill CD, Takatani T, Hohenstein EG (2009) J Phys Chem A 113(38):10146–10159Google Scholar
  150. 150.
    Wang F-F, Jenness G, Al-Saidi WA, Jordan KD (2010) J Chem Phys 132(13):134303Google Scholar
  151. 151.
    Grimme S (2004) Chem Eur J 10(14):3423–3429Google Scholar
  152. 152.
    Jeziorski B, Moszynski R, Szalewicz K (1994) Chem Rev 94(7):1887–1930Google Scholar
  153. 153.
    Jeziorska M, Bogumil J, Jiri C (1987) Int J Quantum Chem 32(2):149–164Google Scholar
  154. 154.
    Moszynski R, Heijmen TGA, Jeziorski B (1996) Mol Phys 88(3):741–758Google Scholar
  155. 155.
    Stroppa A, Kresse G (2008) New J Phys 10(6):063020Google Scholar
  156. 156.
    Pernal K, Podeszwa R, Patkowski K, Szalewicz K (2009) Phys Rev Lett 103(26):4Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Stephan N. Steinmann
    • 1
  • Matthew D. Wodrich
    • 1
    • 2
  • Clemence Corminboeuf
    • 1
    Email author
  1. 1.Laboratory for Computational Molecular Design, Ecole Polytechnique Fédérale de LausanneInstitut des Sciences et Ingénierie ChimiquesLausanneSwitzerland
  2. 2.School of Chemistry and BiochemistryUniversity of GenevaGenevaSwitzerland

Personalised recommendations