Theoretical Chemistry Accounts

, Volume 128, Issue 4–6, pp 457–464 | Cite as

Assisted intramolecular proton transfer in (uracil)2Ca2+ complexes

  • Ane Eizaguirre
  • Al Mokhtar Lamsabhi
  • Otilia Mó
  • Manuel Yáñez
Regular Article


The structure and relative stability of the complexes between uracil dimers and Ca2+, as well as the proton transfer (PT) processes within these dimers, have been investigated by the density functional theory methods. Although in uracil dimers PT occurs as an almost synchronous double PT processes that connect the diketo dimer with a keto-enol dimer, the process within the most stable (uracil)2Ca2+ complexes is much more complicated, and the product of the reaction looks like the result of an intramolecular PT from one of the NH groups of one monomer to one of the carbonyl groups of the same monomer. An analysis of the force profile along the reaction coordinate shows that the intimate mechanism implies three elementary steps, two intermolecular PTs, and an in-plane displacement of one monomer with respect to the other. The result of this so-called assisted intramolecular proton transfer is the formation of a dimer in which only one monomer is a keto-enol derivative, the other monomer being apparently unchanged, although it suffers significant structural rearrangements along the reaction coordinate. Quite importantly, this dimer is significantly stabilized upon Ca2+ association; therefore, while the most stable uracil dimers correspond systematically to associations involving only the diketo forms, in (uracil)2Ca2+ complexes the most stable structures correspond to those in which one of the monomers is a keto-enol uracil isomer.


Uracil dimers Proton transfer Ca2+ complexes DFT calculations Reaction force analysis 



This work has been partially supported by the DGI Project No. CTQ2009-13129-C01, by the Project MADRISOLAR2, Ref.: S2009PPQ/1533 of the Comunidad Autónoma de Madrid, by Consolider on Molecular Nanoscience CSC2007-00010, and by the COST Action CM0702. A generous allocation of computing time at the CCC of the UAM is also acknowledged.

Supplementary material

214_2010_801_MOESM1_ESM.pdf (105 kb)
Supplementary material 1 (PDF 105 kb)


  1. 1.
    Watson JD, Crick FHC (1953) Nature 171:964–967CrossRefGoogle Scholar
  2. 2.
    Watson JD, Crick FHC (1953) Nature 171:737–738CrossRefGoogle Scholar
  3. 3.
    Shibata M, Zielinski TJ, Rein R (1990) Theoretical Biochemistry and Molecular Biophysics. Adenine Press, New YorkGoogle Scholar
  4. 4.
    Saenger W (1984) Principles of Nucleic Acid Structure. Springer Verlag, New YorkCrossRefGoogle Scholar
  5. 5.
    Jeffrey GA, Saenger W (1991) Hydrogen Bonding in Biological Structure. Springer Verlag, New YorkGoogle Scholar
  6. 6.
    Nelson DL, Cox MM, Lehninger AL (2000) Principles of Biochemistry. Worth Publishers Inc, New YorkGoogle Scholar
  7. 7.
    Kierdaszuk B, Stolarski R, Shugar D (1983) Eur J Biochem 130:559–564CrossRefGoogle Scholar
  8. 8.
    He L, Kierzek R, Santalucia J, Walter AE, Turner DH (1991) Biochemistry 30:11124–11132CrossRefGoogle Scholar
  9. 9.
    Florian J, Hrouda V, Hobza P (1994) J Am Chem Soc 116:1457–1460CrossRefGoogle Scholar
  10. 10.
    Walter AE, Wu M, Turner DH (1994) Biochemistry 33:11349–11354CrossRefGoogle Scholar
  11. 11.
    Douhal A, Kim SK, Zewail AH (1995) Nature 378:260–263CrossRefGoogle Scholar
  12. 12.
    Florian J, Leszczynski J (1996) J Am Chem Soc 118:3010–3017CrossRefGoogle Scholar
  13. 13.
    Chen XY, McDowell JA, Kierzek R, Krugh TR, Turner DH (2000) Biochemistry 39:8970–8982CrossRefGoogle Scholar
  14. 14.
    Jiang LH, Russu IM (2001) Nucleic Acids Res 29:4231–4237CrossRefGoogle Scholar
  15. 15.
    Kryachko ES (2002) Int J Quant Chem 90:910–923CrossRefGoogle Scholar
  16. 16.
    Gorb L, Podolyan Y, Dziekonski P, Sokalski WA, Leszczynski J (2004) J Am Chem Soc 126:10119–10129CrossRefGoogle Scholar
  17. 17.
    Zoete V, Meuwly M (2004) J Chem Phys 121:4377–4388CrossRefGoogle Scholar
  18. 18.
    Noguera M, Sodupe M, Bertran J (2004) Theor Chem Acc 112:318–326CrossRefGoogle Scholar
  19. 19.
    Rak J, Makowska J, Voityuk AA (2006) Chem Phys 325:567–574CrossRefGoogle Scholar
  20. 20.
    Noguera M, Sodupe M, Bertran J (2007) Theor Chem Acc 118:113–121CrossRefGoogle Scholar
  21. 21.
    Noguera M, Bertran J, Sodupe M (2008) J Phys Chem B 112:4817–4825CrossRefGoogle Scholar
  22. 22.
    Zhang JD, Chen ZF, Schaefer HF (2008) J Phys Chem A 112:6217–6226CrossRefGoogle Scholar
  23. 23.
    Czerminski R, Lesyng B, Pohorille A (1979) Int J Quant Chem 16:605–613CrossRefGoogle Scholar
  24. 24.
    Les A, Ortegablake I (1986) Int J Quant Chem 30:225–237CrossRefGoogle Scholar
  25. 25.
    Katritzky AR, Karelson M, Harris PA (1991) Heterocycles 32:329–369CrossRefGoogle Scholar
  26. 26.
    Leszczynski J (1992) J Phys Chem 96:1649–1653CrossRefGoogle Scholar
  27. 27.
    Estrin DA, Paglieri L, Corongiu G (1994) J Phys Chem 98:5653–5660CrossRefGoogle Scholar
  28. 28.
    Leszczynski J, Sponer J (1996) J Mol Struct Theochem 388:237–243Google Scholar
  29. 29.
    Lamsabhi M, Alcamí M, Mó O, Bouab W, Esseffar M, Abboud JLM, Yáñez M (2000) J Phys Chem A 104:5122–5130CrossRefGoogle Scholar
  30. 30.
    Marino T, Russo N, Sicilia E, Toscano M (2001) Int J Quant Chem 82:44–52CrossRefGoogle Scholar
  31. 31.
    Millefiori S, Alparone A (2004) Chem Phys 303:27–36CrossRefGoogle Scholar
  32. 32.
    Trujillo C, Mó O, Yáñez M (2007) Org Biomol Chem 5:3092–3099Google Scholar
  33. 33.
    Feyer V, Plekan O, Richter R, Coreno M, Vall-Ilosera G, Prince KC, Trofimov AB, Zaytseva IL, Moskovskaya TE, Gromov EV, Schirmer J (2009) J Phys Chem A 113:5736–5742CrossRefGoogle Scholar
  34. 34.
    Lamsabhi AM, Mó O, Gutiérrez-Oliva S, Perez P, Toro-Labbé A, Yáñez M (2009) J Comput Chem 30:389–398CrossRefGoogle Scholar
  35. 35.
    Lamsabhi AM, Alcamí M, Mó O, Yáñez M, Tortajada J (2006) J Phys Chem A 110:1943–1950CrossRefGoogle Scholar
  36. 36.
    Gutle C, Salpin JY, Cartailler T, Tortajada J, Gaigeot MP (2006) J Phys Chem A 110:11684–11694CrossRefGoogle Scholar
  37. 37.
    Trujillo C, Lamsabhi AM, Mó O, Yáñez M, Salpin JY (2008) Org Biomol Chem 6:3695–3702CrossRefGoogle Scholar
  38. 38.
    Sponer J, Sabat M, Burda JV, Leszczynski J, Hobza P (1999) J Phys Chem B 103:2528–2534CrossRefGoogle Scholar
  39. 39.
    Zhang Y, Huang KX (2007) J Mol Struct Theochem 812:51–62CrossRefGoogle Scholar
  40. 40.
    Miyachi H, Matsui T, Shigeta Y, Hirao K (2010) Phys Chem Chem Phys 12:909–917CrossRefGoogle Scholar
  41. 41.
    Lee C, Yang W, Parr RG (1988) Theochem 40:305–313CrossRefGoogle Scholar
  42. 42.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  43. 43.
    Corral I, Mó O, Yáñez M, Scott A, Radom L (2003) J Phys Chem A 107:10456–10461CrossRefGoogle Scholar
  44. 44.
    van der Wijst T, Guerra CF, Swart M, Bickelhaupt FM (2006) Chem Phys Lett 426:415–421CrossRefGoogle Scholar
  45. 45.
    Toro-Labbe A (1999) J Phys Chem A 103:4398–4403CrossRefGoogle Scholar
  46. 46.
    Jaque P, Toro-Labbe A (2000) J Phys Chem A 104:995–1003CrossRefGoogle Scholar
  47. 47.
    Gutierrrez-Oliva S, Herrera B, Toro-Labbe A, Chermette H (2005) J Phys Chem A 109:1748–1751CrossRefGoogle Scholar
  48. 48.
    Politzer P, Toro-Labbe A, Gutierrez-Oliva S, Herrera B, Jaque P, Concha MC, Murray JS (2005) J Chem Sci 117:467–472CrossRefGoogle Scholar
  49. 49.
    Toro-Labbe A, Gutierrerez-Oliva S, Murray JS, Politzer P (2007) Mol Phys 105:2619–2625CrossRefGoogle Scholar
  50. 50.
    Rincon E, Toro-Labbe A (2007) Chem Phys Lett 438:93–98CrossRefGoogle Scholar
  51. 51.
    Bader RFW (1990) Atoms in Molecules. A Quantum Theory. Clarendon Press, OxfordGoogle Scholar
  52. 52.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  53. 53.
    Silvi B, Savin A (1994) Nature 371:683–686CrossRefGoogle Scholar
  54. 54.
    Keith TA (2010) AIMAll (Version 10.05.04).
  55. 55.
    Savin A, Nesper R, Wengert S, Fäsler TF (1997) Angew Chem Int Ed Engl 36:1808–1832CrossRefGoogle Scholar
  56. 56.
    Mó O, Yáñez M, Martín Pendás A, Del Bene JE, Alkorta I, Elguero J (2007) Phys Chem Chem Phys 9:3970–3977Google Scholar
  57. 57.
    Noury S, Krokidis X, Fuster F, Silvi B (1999) Comput Chem 23:597–604CrossRefGoogle Scholar
  58. 58.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  59. 59.
    Kelly REA, Kantorovich LN (2006) J Phys Chem B 110:2249–2255CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ane Eizaguirre
    • 1
  • Al Mokhtar Lamsabhi
    • 1
  • Otilia Mó
    • 1
  • Manuel Yáñez
    • 1
  1. 1.Departamento de Química, Módulo 13Universidad Autónoma de Madrid, CantoblancoMadridSpain

Personalised recommendations