Advertisement

Theoretical Chemistry Accounts

, Volume 129, Issue 3–5, pp 325–330 | Cite as

NMR shielding constants in hydrogen molecule isotopomers

  • Michał JaszuńskiEmail author
  • Grzegorz Łach
  • Krzysztof Strasburger
Regular Article

Abstract

We analyze the NMR shielding constants in three isotopomers of the hydrogen molecule: H2, HD and D2. The results obtained within the Born–Oppenheimer approximation using the coupled-cluster singles-and-doubles model are very close to the previous theoretical values. In particular, the isotope shifts computed using significantly larger basis sets agree with the earlier literature results, confirming the disagreement of these calculations with the available experimental data. To examine the accuracy of the computed isotope shifts, we analyze in addition the relativistic corrections and estimate the role of the adiabatic and nonadiabatic effects. The relativistic corrections appear to be negligible; on the other hand, the changes in the shielding constants due to the adiabatic and nonadiabatic effects may account for the discrepancies between the computed and experimental isotope shifts.

Keywords

Shielding constants Isotope shifts Hydrogen molecule CCSD calculations 

Notes

Acknowledgments

We are indebted to Dr Krzysztof Pachucki for many helpful discussions and to Dr Trond Saue for the DIRAC program (GIAO version).

References

  1. 1.
    Sundholm D, Gauss J, Ahlrichs R (1995) Chem Phys Lett 243:264CrossRefGoogle Scholar
  2. 2.
    Sundholm D, Gauss J, Schäfer A (1996) J Chem Phys 105:11051CrossRefGoogle Scholar
  3. 3.
    Sundholm D, Gauss J (1997) Mol Phys 92:1007Google Scholar
  4. 4.
    London F (1937) J Phys Radium 8:397CrossRefGoogle Scholar
  5. 5.
    Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 02/25/04, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, USA, and funded by the US Department of Energy. The Pacific Northwest Laboratory is a multi-program laboratory operated by Battelle Memorial Institute for the US Department of Energy under contract DE-AC06-76RLO 1830. Contact Karen Schuchardt for further informationGoogle Scholar
  6. 6.
    Raynes WT, Panteli N (1983) Mol Phys 48:439CrossRefGoogle Scholar
  7. 7.
    Beckett JR, Carr HY (1981) Phys Rev A 24:144CrossRefGoogle Scholar
  8. 8.
    Pachucki K, Komasa J (2009) J Chem Phys 130:164113CrossRefGoogle Scholar
  9. 9.
    Wimett TF (1953) Phys Rev 91:476Google Scholar
  10. 10.
    Pachucki K (2010) Phys Rev A 81:032505CrossRefGoogle Scholar
  11. 11.
    Strasburger K (2009) J Chem Phys 131:134103CrossRefGoogle Scholar
  12. 12.
    Thorson WR, Choi JH, Knudson SK (1985) Phys Rev A 31:22CrossRefGoogle Scholar
  13. 13.
    Pachucki K, Komasa J (2008) Phys Rev A 78:052503CrossRefGoogle Scholar
  14. 14.
    Gonçalves CP, Mohallem JR (2003) Theor Chem Acc 110:367CrossRefGoogle Scholar
  15. 15.
    Assafrão D, Mohallem JR (2007) J Phys B At Mol Opt Phys 40:F85CrossRefGoogle Scholar
  16. 16.
    Neronov YuI, Barzakh AE, Mukhamadiev K (1975) Zh Eksp Teor Fis 69:1872Google Scholar
  17. 17.
    Evans DF (1961) Chem Indust (London), p 1960Google Scholar
  18. 18.
    Dayan E, Widenlocher G, Chaigneau M (1963) Compt Rend Acad Sci (Paris) 257:2455Google Scholar
  19. 19.
    Neronov YuI, Karshenboim SG (2003) Phys Lett A 318:126CrossRefGoogle Scholar
  20. 20.
    Karshenboim SG, Ivanov VG, Neronov YuI, Nikolaev BP, Tolparov YuN (2005) Can J Phys 83:405CrossRefGoogle Scholar
  21. 21.
    Aces II Mainz-Austin-Budapest-Version 2005, a quantum chemical program package, written by Stanton JF, Gauss J, Watts JD, Szalay PG, Bartlett RJ with contribution from Auer AA, Bernholdt DB, Christiansen O, Harding ME, Heckert M, Heun O, Huber C, Jonsson D, Juselius J, Lauderdale WJ, Metzroth T, Ruud K and the integral packages MOLECULE (Almlöf J and Taylor PR), Props (Taylor PR), and ABACUS (Helgaker T, Jensen HJAa, Jørgensen P, and Olsen J). See also Stanton JF, Gauss J, Watts JD, Lauderdale WJ, Bartlett RJ, Int J Quant Chem Symp 26, 879 (1992) as well as: http://www.aces2.de for the current versionGoogle Scholar
  22. 22.
    DIRAC 04, a relativistic ab initio electronic structure program, Release DIRAC04.0 (2004), written by Jensen HJAa, Saue T, and Visscher L with contributions from Bakken V, Eliav E, Enevoldsen T, Fleig T, Fossgaard O, Helgaker T, Laerdahl J, Larsen CV, Norman P, Olsen J, Pernpointner M, Pedersen JK, Ruud K, Salek P, van Stralen JNP, Thyssen J, Visser O, and Winther T; see http://dirac.chem.sdu.dk
  23. 23.
    Dalton, a molecular electronic structure program, release 2.0 (2005), see http://www.kjemi.uio.no/software/dalton/dalton.html

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Michał Jaszuński
    • 1
    Email author
  • Grzegorz Łach
    • 2
    • 4
  • Krzysztof Strasburger
    • 3
  1. 1.Institute of Organic ChemistryPolish Academy of SciencesWarsawPoland
  2. 2.Department of ChemistryUniversity of WarsawWarsawPoland
  3. 3.Institute of Physical and Theoretical ChemistryWrocław University of TechnologyWrocławPoland
  4. 4.Physikalisches Institut der Universität HeidelbergHeidelbergGermany

Personalised recommendations