Advertisement

Theoretical Chemistry Accounts

, Volume 129, Issue 3–5, pp 313–324 | Cite as

Nuclear magnetic resonance parameters in water dimer

  • Teemu S. PennanenEmail author
  • Perttu Lantto
  • Mikko Hakala
  • Juha Vaara
Regular Article

Abstract

The changes in the computed nuclear magnetic resonance (NMR) parameters of the water dimer with respect to their monomer values were monitored as the geometry of the dimer was systematically varied. Nuclear magnetic shielding constants, shielding tensor anisotropies, nuclear quadrupole coupling constants and spin–spin coupling constants for the hydrogen bond donor and acceptor molecules were calculated at hybrid density-functional theory level. The dimer geometry was specified through the intermolecular oxygen–oxygen distance R OO and the hydrogen bond angle α. A grid of 120 geometries was selected by systematically varying these two parameters. The other geometrical parameters of the dimer were allowed to relax, keeping the two parameters fixed. As the dimer geometry was varied, all NMR parameters were observed to be smoothly behaving. Characteristic changes as a function of the intermolecular geometry were observed. These include, besides the well-known deshielding of the donor hydrogen shielding constant, also influences on the donor deuterium quadrupole coupling constant, as well as the shielding anisotropy of the donor and acceptor oxygens. We discuss the contributions to the total dimerisation effect from, on the one hand, the dominant direct interaction effect at a fixed geometry and, on the other hand, from the quantitatively relevant indirect, geometric effect. A fundamental ambiguity of this partitioning is demonstrated. By forging the general, smooth trends in all the studied NMR parameters into a specific geometric definition, we find our data to be in agreement with the widely used distance criterion for hydrogen bonding in water, R OO ≤ 3.5 Å.

Keywords

Hydrogen bonding Nuclear shielding Quadrupole coupling Spin–spin coupling Property surfaces Density-functional theory Direct and indirect interaction effects 

Notes

Acknowledgments

TP is grateful to the financial support from the Graduate School of Computational Chemistry and Molecular Spectroscopy, Oulu University Scholarship Foundation, Research Foundation of Orion Corporation, The Finnish Foundation for Economic and Technology Sciences—KAUTE, Magnus Ehrnrooth Foundation, and Finnish Cultural Foundation. The authors belong to the Finnish Center of Excellence in Computational Molecular Science (CMS, 2006-11). PL is Academy Research Fellow of the Academy of Finland. Computational resources were partially provided by CSC—Scientific Computing Ltd, Espoo, Finland.

Supplementary material

214_2010_782_MOESM1_ESM.pdf (494 kb)
PDF (494 KB)

References

  1. 1.
    Wernet Ph, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Näslund LÅ, Hirsch TK, Ojamäe L, Glatzel P, Pettersson LGM, Nilsson A (2004) Science 304:995–1012CrossRefGoogle Scholar
  2. 2.
    Stillinger FH (1980) Science 209:451CrossRefGoogle Scholar
  3. 3.
    Eisenberg D, Kauzmann W (1969) The structure and properties of water. Clarendon, OxfordGoogle Scholar
  4. 4.
    Prendergast D, Galli G (2006) Phys Rev Lett 96:215502CrossRefGoogle Scholar
  5. 5.
    Wang RLC, Kreuzer HJ, Grunze M (2006) Phys Chem Chem Phys 8:4744CrossRefGoogle Scholar
  6. 6.
    Soper AK (2005) J Phys Condens Matter 17:S3273CrossRefGoogle Scholar
  7. 7.
    Bukowski R, Szalewicz K, Groenenboom GC, van der Avoird A (2007) Science 315:1249CrossRefGoogle Scholar
  8. 8.
    Odutola JA, Dyke TR (1980) J Chem Phys 72:5062CrossRefGoogle Scholar
  9. 9.
    Dyke TR (1984) Top Curr Chem 120:85Google Scholar
  10. 10.
    Halkier A, Koch H, Jørgensen P, Christiansen O, Nielsen IMB, Helgaker T (1997) Theor Chem Acc 97:150Google Scholar
  11. 11.
    Klopper W, van Duijneveldt-van de Rijdt JGCM, van Duijneveldt FB (2000) Phys Chem Chem Phys 2:2227CrossRefGoogle Scholar
  12. 12.
    Hakala M, Nygård K, Manninen S, Huotari S, Buslaps T, Nilsson A, Pettersson LGM, Hämäläinen K (2006) J Chem Phys 125:084504CrossRefGoogle Scholar
  13. 13.
    Levitt MH (2001) Spin dynamics: basics of nuclear magnetic resonance. Wiley, ChichesterGoogle Scholar
  14. 14.
    Vaara J, Lounila J, Ruud K, Helgaker T (1998) J Chem Phys 109:8388CrossRefGoogle Scholar
  15. 15.
    Wigglesworth RD, Raynes WT, Sauer SPA, Oddershede J (1998) Mol Phys 94:851Google Scholar
  16. 16.
    Olsen L, Christiansen O, Hemmingsen L, Sauer SPA, Mikkelsen KV (2002) J Chem Phys 116:1424CrossRefGoogle Scholar
  17. 17.
    Pennanen TS, Vaara J, Lantto P, Sillanpää AJ, Laasonen K, Jokisaari J (2004) J Am Chem Soc 126:11093, and references thereinGoogle Scholar
  18. 18.
    Pennanen TS, Lantto P, Sillanpää AJ, Vaara J (2007) J Phys Chem A 111:182CrossRefGoogle Scholar
  19. 19.
    Müller MG, Kirchner B, Vogt PS, Huber H, Searles DJ (2001) Chem Phys Lett 346:160CrossRefGoogle Scholar
  20. 20.
    Ditchfield R (1976) J Chem Phys 65:3123CrossRefGoogle Scholar
  21. 21.
    Chesnut DB, Rusiloski BE (1993) J Phys Chem 97:2839CrossRefGoogle Scholar
  22. 22.
    Pecul M, Sadlej J (1999) Chem Phys Lett 308:486CrossRefGoogle Scholar
  23. 23.
    Pecul M, Lewandowski J, Sadlej J (2001) Chem Phys Lett 333:139CrossRefGoogle Scholar
  24. 24.
    Pecul M, Sadlej J, Helgaker T (2003) Chem Phys Lett 372:476CrossRefGoogle Scholar
  25. 25.
    Kongsted J, Aidas K, Mikkelsen KV, Sauer SPA (2008) J Chem Theory Comput 4:267CrossRefGoogle Scholar
  26. 26.
    Mezei M, Beveridge DL (1981) J Chem Phys 74:622CrossRefGoogle Scholar
  27. 27.
    Luzar A, Chandler D (1996) Phys Rev Lett 76:928CrossRefGoogle Scholar
  28. 28.
    Kumar R, Schmidt JR, Skinner JL (2007) J Chem Phys 126:204107CrossRefGoogle Scholar
  29. 29.
    Åstrand P-O, Mikkelsen KV, Ruud K, Helgaker T (1996) J Chem Phys 100:19771CrossRefGoogle Scholar
  30. 30.
    Ramsey NF (1950) Phys Rev 78:699CrossRefGoogle Scholar
  31. 31.
    Ramsey NF (1953) Phys Rev 91:303CrossRefGoogle Scholar
  32. 32.
    Kowalewski J, Mäler L (2006) Nuclear spin relaxation in liquids: theory, experiments, and applications. Taylor & Francis, Boca Raton, FLCrossRefGoogle Scholar
  33. 33.
    Abragam A (1961) The principles of nuclear magnetism. Oxford University Press, OxfordGoogle Scholar
  34. 34.
    Slichter CP (1990) Principles of magnetic resonance, 2nd edn. Springer, BerlinGoogle Scholar
  35. 35.
    Struis RPWJ, De Bleijser J, Leyte JC (1987) J Phys Chem 91:1639CrossRefGoogle Scholar
  36. 36.
    Nygård K, Hakala M, Manninen S, Andrejczuk A, Itou M, Sakurai Y, Pettersson LGM, Hämäläinen K (2006) Phys Rev E 74:031503CrossRefGoogle Scholar
  37. 37.
    Sorenson JM, Hura G, Glaeser RM, Head-Gordon T (2000) J Chem Phys 113:9149CrossRefGoogle Scholar
  38. 38.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  39. 39.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  40. 40.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian Inc., Wallingford, CTGoogle Scholar
  41. 41.
    Dunning ThH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  42. 42.
    Kendall RA, Dunning ThH Jr, Harrison RJ (1992) J Chem Phys 96:6796CrossRefGoogle Scholar
  43. 43.
    DALTON, a molecular electronic structure program, release 2.0 (2005) See http://www.kjemi.uio.no/software/dalton/dalton.html
  44. 44.
    Woon DE, Dunning ThH Jr (1995) J Chem Phys 103:4572CrossRefGoogle Scholar
  45. 45.
    Stanton JF, Gauss J, Watts JD et al, ACES II Mainz-Austin-Budapest version; see also Stanton JF, Gauss J, Watts JD, Lauderdale WJ, Bartlett RJ (1992) Int J Quantum Chem, Quantum Chem Symp 26:879. Current version, see http://www.aces2.de
  46. 46.
    Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251CrossRefGoogle Scholar
  47. 47.
    Helgaker T, Jørgensen P (1991) J Chem Phys 95:2595CrossRefGoogle Scholar
  48. 48.
    Cybulski H, Sadlej J (2006) Chem Phys 323:218CrossRefGoogle Scholar
  49. 49.
    Peralta JE, Scuseria GE, Cheeseman JR, Frisch MJ (2003) Chem Phys Lett 375:452CrossRefGoogle Scholar
  50. 50.
    Puzzarini C, Cazzoli G, Harding ME, Vázquez J, Gauss J (2009) J Chem Phys 131:234304CrossRefGoogle Scholar
  51. 51.
    Raynes WT (1978) Spec Per Reps Nucl Magn Reson 7:1CrossRefGoogle Scholar
  52. 52.
    Bellet J, Lafferty WJ, Steenbeckeliers G (1973) J Mol Spectrosc 47:388CrossRefGoogle Scholar
  53. 53.
    Garvey RM, DeLucia FC (1988) Can J Phys 55:1115CrossRefGoogle Scholar
  54. 54.
    Wasylishen RE, Friedrich JO (1987) Can J Chem 65:2238CrossRefGoogle Scholar
  55. 55.
    Sergeyev NM, Sergeyeva ND, Strelenko YA, Raynes WT (1997) Chem Phys Lett 277:142CrossRefGoogle Scholar
  56. 56.
    Höller R, Lischka H (1981) Chem Phys Lett 84:94CrossRefGoogle Scholar
  57. 57.
    Keal TW, Tozer DJ (2004) J Chem Phys 121:5654CrossRefGoogle Scholar
  58. 58.
    Hanni M, Lantto P, Runeberg N, Jokisaari J, Vaara J (2004) J Chem Phys 121:5908CrossRefGoogle Scholar
  59. 59.
    Hanni M, Lantto P, Ilias M, Jensen HJAa, Vaara J (2007) J Chem Phys 127:164313CrossRefGoogle Scholar
  60. 60.
    van Duijneveldt FB, van Duijneveldt-van de Rijdt JGCM, van Lenthe JH (1994) Chem Rev 94:1873CrossRefGoogle Scholar
  61. 61.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  62. 62.
    Xantheas SS (1996) J Chem Phys 104:8821CrossRefGoogle Scholar
  63. 63.
    Dyke TR (1977) J Chem Phys 66:492CrossRefGoogle Scholar
  64. 64.
    Watanabe Y, Taketsugufoot T, Wales DJ (2004) J Chem Phys 120:5993CrossRefGoogle Scholar
  65. 65.
    Hanni M, Lantto P, Vaara J (2009) Phys Chem Chem Phys 11:2485CrossRefGoogle Scholar
  66. 66.
    Vaara J (2007) Phys Chem Chem Phys 9:5399CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Teemu S. Pennanen
    • 1
    • 3
    Email author
  • Perttu Lantto
    • 1
  • Mikko Hakala
    • 2
  • Juha Vaara
    • 1
    • 3
  1. 1.NMR Research Group, Department of PhysicsUniversity of OuluOuluFinland
  2. 2.Department of PhysicsUniversity of HelsinkiHelsinkiFinland
  3. 3.Laboratory of Physical Chemistry, Department of ChemistryUniversity of HelsinkiHelsinkiFinland

Personalised recommendations