Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 689–695 | Cite as

Modulation of the work function of silicon nanowire by chemical surface passivation: a DFT study

Regular Article

Abstract

The electronic structures and work functions of hydrogen (H−), fluorine (F−), and hydroxyl (OH−) passivated silicon nanowires (SiNWs) are evaluated by DFT calculations. We reveal that the work function of SiNW depends strongly on the nature of passivating functional groups, the percentage of passivation and the surface passivated. In particular, a trend of work functions: F-SiNW > H-SiNW > OH-SiNW, is obtained. Taking H-SiNW as the reference, the increased work function in F-SiNW is attributed to the electron withdrawing effect from highly electronegative F atom. In contrast, although O atom is also highly electronegative, for OH-SiNW, such effect is countered by the resonance effect in which electron is donated back to the SiNW surfaces, resulting in reduced work function. The extent of the increment or reduction is proportional to the percentage coverage of the passivating chemicals. Moreover, the work function changes more significantly when the di-substituted (100) surfaces are passivated than that of the mono-substituted (110) surfaces. Consequently, OH-SiNW shows conjugate-liked Si–Si bonds at both the surfaces and the core. The results indicate that the work function of SiNW can be fine tuned by using selected chemical on selected surface with known amount of coverage for customizing purpose.

Keywords

Silicon nanowire Work function DFT Surface modification 

Supplementary material

214_2010_779_MOESM1_ESM.pdf (25 kb)
Supplementary material 1 (PDF 25 kb)

References

  1. 1.
    Morales AM, Lieber CM (1998) Science 279:208CrossRefGoogle Scholar
  2. 2.
    Holmes JD, Johnston KP, Doty RC, Korgel BA (2000) Science 287:1471CrossRefGoogle Scholar
  3. 3.
    Cui Y, Lauhon LJ, Gudiksen MS, Wang J, Lieber CM (2001) Appl Phys Lett 78:2214CrossRefGoogle Scholar
  4. 4.
    Zhang RQ, Lifshitz Y, Lee ST (2003) Adv Mater 15:635CrossRefGoogle Scholar
  5. 5.
    Wu Y, Cui Y, Huynh L, Barrelet CJ, Bell DC, Lieber CM (2004) Nano Lett 4:433CrossRefGoogle Scholar
  6. 6.
    Read AJ, Needs RJ, Nash KJ, Canham LT, Calcott PDJ, Qteish A (1992) Phys Rev Lett 69:1232CrossRefGoogle Scholar
  7. 7.
    Zhao X, Wei CM, Yang L, Chou MY (2004) Phys Rev Lett 92:236805CrossRefGoogle Scholar
  8. 8.
    Zhang RQ, Lifshitz Y, Ma DDD, Zhao YL, Frauenheim Th, Lee ST, Tong SY (2005) J Chem Phys 123:144703CrossRefGoogle Scholar
  9. 9.
    Ng MF, Zhou LP, Yang SW, Sim LY, Tan VBC, Wu P (2007) Phys Rev B 76:155435CrossRefGoogle Scholar
  10. 10.
    Ng MF, Shen L, Zhou LP, Yang SW, Tan VBC (2008) Nano Lett 8:3662CrossRefGoogle Scholar
  11. 11.
    Svizhenko A, Leu PW, Cho K (2007) Phys Rev B 75:125417CrossRefGoogle Scholar
  12. 12.
    Leu PW, Svizhenko A, Cho K (2008) Phys Rev B 77:235305CrossRefGoogle Scholar
  13. 13.
    Sorokin PB, Avramov PV, Kvashnin AG, Kvashnin DG, Ovchinnikov SG, Fedorov AS (2008) Phys Rev B 77:235417CrossRefGoogle Scholar
  14. 14.
    Leu PW, Shan B, Cho K (2006) Phys Rev B 73:195320CrossRefGoogle Scholar
  15. 15.
    Vo T, Williamson AJ, Galli G (2006) Phys Rev B 74:045116CrossRefGoogle Scholar
  16. 16.
    Cui Y, Wei Q, Park H, Lieber CM (2001) Science 293:1289CrossRefGoogle Scholar
  17. 17.
    Hahm J, Lieber CM (2004) Nano Lett 4:51CrossRefGoogle Scholar
  18. 18.
    Cui Y, Lieber CM (2001) Science 291:851CrossRefGoogle Scholar
  19. 19.
    Tian B, Zheng X, Kempa TJ, Fang Y, Yu N, Yu G, Huang J, Lieber CM (2007) Nature 449:885CrossRefGoogle Scholar
  20. 20.
    Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM (2002) Nature 415:617CrossRefGoogle Scholar
  21. 21.
    Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley & Sons, Inc, LondonCrossRefGoogle Scholar
  22. 22.
    Ma DDD, Lee CS, Au FCK, Tong SY, Lee ST (2003) Science 299:1874CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  24. 24.
    Kresse G, Furthmüller J (1996) Comput Mat Sci 6:15CrossRefGoogle Scholar
  25. 25.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  26. 26.
    Blochl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  27. 27.
    Ng MF, Teo MK, Lim KH, Zhou L, Sullivan MB, Yang SW (2008) Diam Relat Mater 17:2048CrossRefGoogle Scholar
  28. 28.
    Kokalj A (1999) J Mol Graph Model 17:176CrossRefGoogle Scholar
  29. 29.
    Bimberg D, Blachnik R, Cardona M, Dean PJ, Grave T, Harbeke G, Hübner K, Kaufmann U, Kress W, Madelung O, von Münch W, Rössler U, Schneider J, Schulz M, Skolnick (1982) In: Madelung O (ed) Physics of group IV elements and III-V compounds. Springer, New YorkGoogle Scholar
  30. 30.
    Cheng TC, Shieh J, Huang WJ, Yang MC, Cheng MH, Lin HM, Chang MN (2006) Appl Phys Lett 88:263118CrossRefGoogle Scholar
  31. 31.
    Aradi B, Ramos LE, Deák P, Köhler T, Bechstedt F, Zhang RQ, Frauenheim T (2007) Phys Rev B 76:035305CrossRefGoogle Scholar
  32. 32.
    Ponomareva I, Menon M, Srivastava D, Andriotis AN (2005) Phys Rev Lett 95:265502CrossRefGoogle Scholar
  33. 33.
    Nieskens DLS, Ferré DC, Niemantsverdriet JW (2005) Chem Phys Chem 6:1293Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of High Performance ComputingSingaporeSingapore
  2. 2.Division of Chemical and Biomolecular Engineering, School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations