Theoretical Chemistry Accounts

, Volume 129, Issue 3–5, pp 303–312 | Cite as

DFT studies of reductive elimination, C–H activation and β-hydride elimination in alkyl and aryl palladium amine complexes

  • Christopher Ryan
  • Alexandra K. de K. Lewis
  • Stephen Caddick
  • Nikolas KaltsoyannisEmail author
Regular Article


The factors affecting C–N bond formation via reductive elimination from Pd(I t Bu)(neopentyl)(morpholide) (I t Bu = 1,3-Di-tert-butyl-imidazol-2-ylidene) are studied computationally. DFT calculations indicate that choosing an alkyl group without β hydrides, such as neopentyl, has a detrimental effect on the possibility of C–N reductive elimination. In the absence of β hydride elimination, a pathway of lower energy than reductive elimination is found, namely morpholide-promoted C–H activation of neopentyl t Bu has a significantly lower activation energy than reductive elimination. Changing the ancillary ligand from I t Bu to tricyclopentylphosphine (P(Cyp)3) has little impact. By contrast, replacing neopentyl by phenyl leads to a c. 50% reduction in activation energy. Study of Pd(I t Bu)(2-methylpropyl)(morpholide) permits comparison of the potential energy surfaces for three possible processes; (1) reductive elimination (2) morpholide-promoted C–H activation and (3) β-hydride elimination and reveals that the activation energies for these processes increase in the order of (3) < (2) < (1).

Graphical Abstract

Reductive elimination, C–H activation and β-hydride elimination processes in alkyl and aryl palladium amine complexes are studied computationally, in order to establish why reductive elimination in the alkyl complexes is so elusive.


Palladium Organometallic Reductive elimination Beta hydride elimination C–H activation NHC 



We are grateful to EPSRC and BBSRC for support of this project. We also thank UCL for computing resources via the Research Computing “Legion” cluster and associated services, and the reviewers for their helpful comments.

Supplementary material

214_2010_775_MOESM1_ESM.docx (348 kb)
Cartesian coordinates of the optimised geometries of all of the species calculated. (DOCX 347 kb)


  1. 1.
    Diedrich FS, Stang PJ (1998) Metal-catalysed cross-coupling reactions. Wiley, New YorkCrossRefGoogle Scholar
  2. 2.
    Tsuji J (1995) Reagents and catalysts. Wiley, New YorkGoogle Scholar
  3. 3.
    Bellina F, Carpita A, Rossi R (2004) Synthesis-Stuttgart. 2419Google Scholar
  4. 4.
    Miyaura N, Suzuki A (1995) Chem Rev 95:2457CrossRefGoogle Scholar
  5. 5.
    Suzuki A (1999) J Organomet Chem 576:147CrossRefGoogle Scholar
  6. 6.
    Negishi E, King AO, Okukado N (1977) J Org Chem 42:1821CrossRefGoogle Scholar
  7. 7.
    Negishi E, Vanhorn DE (1977) J Am Chem Soc 99:3168CrossRefGoogle Scholar
  8. 8.
    O’Brien CJ, Kantchev EAB, Valente C, Hadei N, Chass GA, Lough A, Hopkinson AC, Organ MG (2006) Chem Eur J 12:4743CrossRefGoogle Scholar
  9. 9.
    Organ MG, Avola S, Dubovyk I, Hadei N, Kantchev EAB, O’Brien CJ, Valente C (2006) Chem Eur J 12:4749CrossRefGoogle Scholar
  10. 10.
    Beletskaya IP, Cheprakov AV (2000) Chem Rev 100:3009CrossRefGoogle Scholar
  11. 11.
    Hartwig JF (1998) Acc Chem Res 31:852CrossRefGoogle Scholar
  12. 12.
    Tamao K, Sumitani K, Kumada M (1972) J Am Chem Soc 94:4374CrossRefGoogle Scholar
  13. 13.
    Wolfe JP, Wagaw S, Marcoux JF, Buchwald SL (1998) Acc Chem Res 31:805CrossRefGoogle Scholar
  14. 14.
    Arentsen K, Caddick S, Cloke FGN (2005) Tetrahedron 61:9710CrossRefGoogle Scholar
  15. 15.
    Caddick S, Geoffrey F, Cloke N, Hitchcock PB, Leonard J, Lewis AKD, McKerrecher D, Titcomb LR (2002) Organometallics 21:4318CrossRefGoogle Scholar
  16. 16.
    Ishiyama T, Abe S, Miyaura N, Suzuki A (1992) Chem Lett 691Google Scholar
  17. 17.
    Zhou J, Fu GC (2004) J Am Chem Soc 126:1340CrossRefGoogle Scholar
  18. 18.
    Terao J, Ikumi A, Kuniyasu H, Kambe N (2003) J Am Chem Soc 125:5646CrossRefGoogle Scholar
  19. 19.
    Frisch AC, Shaikh N, Zapf A, Beller M (2002) Angew Chem Int Ed 41:4056CrossRefGoogle Scholar
  20. 20.
    Jensen AE, Knochel P (2002) J Org Chem 67:79CrossRefGoogle Scholar
  21. 21.
    McGuinness DS, Saendig N, Yates BF, Cavell KJ (2001) J Am Chem Soc 123:4029CrossRefGoogle Scholar
  22. 22.
    Esposito O, Gois PMP, Lewis A, Caddick S, Cloke FGN, Hitchcock PB (2008) Organometallics 27:6411CrossRefGoogle Scholar
  23. 23.
    Esposito O, Lewis A, Hitchcock PB, Caddick S, Cloke FGN (2007) Chem Commun 1157Google Scholar
  24. 24.
    Chass GA, O’Brien CJ, Hadei N, Kantchev EAB, Mu WH, Fang DC, Hopkinson AC, Csizmadia IG, Organ MG (2009) Chem Eur J 15:4281CrossRefGoogle Scholar
  25. 25.
    Green JC, Herbert BJ, Lonsdale R (2005) J Organomet Chem 690:6054CrossRefGoogle Scholar
  26. 26.
    Surawatanawong P, Fan Y, Hall MB (2008) J Organomet Chem 693:1552CrossRefGoogle Scholar
  27. 27.
    Cundari TR, Deng J (2005) J Phys Org Chem 18:417CrossRefGoogle Scholar
  28. 28.
    Barder TE, Buchwald SL (2007) J Am Chem Soc 129:12003CrossRefGoogle Scholar
  29. 29.
    Goossen LJ, Koley D, Hermann HL, Thiel W (2005) J Am Chem Soc 127:11102CrossRefGoogle Scholar
  30. 30.
    Kozuch S, Shaik S (2006) J Am Chem Soc 128:3355CrossRefGoogle Scholar
  31. 31.
    Braga AAC, Ujaque G, Maseras F (2006) Organometallics 25:3647CrossRefGoogle Scholar
  32. 32.
    Kozuch S, Lee SE, Shaik S (2009) Organometallics 28:1303CrossRefGoogle Scholar
  33. 33.
    Goossen LJ, Koley D, Hermann H, Thiel W (2004) Chem Commun 2141Google Scholar
  34. 34.
    Diefenbach A, Bickelhaupt FM (2001) J Chem Phys 115:4030CrossRefGoogle Scholar
  35. 35.
    Fazaeli R, Ariafard A, Jamshidi S, Tabatabaie ES, Pishro KA (2007) J Organomet Chem 692:3984CrossRefGoogle Scholar
  36. 36.
    Perez-Temprano MH, Nova A, Casares JA, Espinet P (2008) J Am Chem Soc 130:10518CrossRefGoogle Scholar
  37. 37.
    Stambuli JP, Incarvito CD, Buhl M, Hartwig JF (2004) J Am Chem Soc 126:1184CrossRefGoogle Scholar
  38. 38.
    Ahlquist M, Fristrup P, Tanner D, Norrby PO (2006) Organometallics 25:2066CrossRefGoogle Scholar
  39. 39.
    Ahlquist M, Norrby PO (2007) Organometallics 26:550CrossRefGoogle Scholar
  40. 40.
    Ariafard A, Lin ZY (2006) Organometallics 25:4030CrossRefGoogle Scholar
  41. 41.
    Barder TE, Biscoe MR, Buchwald SL (2007) Organometallics 26:2183CrossRefGoogle Scholar
  42. 42.
    Goossen LJ, Koley D, Hermann HL, Thiel W (2005) Organometallics 24:2398CrossRefGoogle Scholar
  43. 43.
    Goossen LJ, Koley D, Hermann HL, Thiel W (2006) Organometallics 25:54CrossRefGoogle Scholar
  44. 44.
    Senn HM, Ziegler T (2004) Organometallics 23:2980CrossRefGoogle Scholar
  45. 45.
    Alvarez R, Faza ON, de Lera AR, Cardenas DJ (2007) Adv Synth Catal 349:887CrossRefGoogle Scholar
  46. 46.
    Braga AAC, Morgon NH, Ujaque G, Lledos A, Maseras F (2006) J Organomet Chem 691:4459CrossRefGoogle Scholar
  47. 47.
    Braga AAC, Morgon NH, Ujaque G, Maseras F (2005) J Am Chem Soc 127:9298CrossRefGoogle Scholar
  48. 48.
    Casares JA, Espinet P, Fuentes B, Salas G (2007) J Am Chem Soc 129:3508CrossRefGoogle Scholar
  49. 49.
    Nova A, Ujaque G, Maseras F, Lledos A, Espinet P (2006) J Am Chem Soc 128:14571CrossRefGoogle Scholar
  50. 50.
    Napolitano E, Farina V, Persico M (2003) Organometallics 22:4030CrossRefGoogle Scholar
  51. 51.
    Ananikov VP, Musaev DG, Morokuma K (2002) J Am Chem Soc 124:2839CrossRefGoogle Scholar
  52. 52.
    Ananikov VP, Musaev DG, Morokuma K (2005) Organometallics 24:715CrossRefGoogle Scholar
  53. 53.
    Zuidema E, van Leeuwen P, Bo C (2005) Organometallics 24:3703CrossRefGoogle Scholar
  54. 54.
    Macgregor SA, Neave GW, Smith C (2003) Faraday Discuss 124:111CrossRefGoogle Scholar
  55. 55.
    Scientific Computing and Modelling, Theoretical Chemistry, Vrei Universiteit, Amsterdam, The Netherlands,
  56. 56.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  57. 57.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  58. 58.
    Evans WJ, Kozimor SA, Ziller JW, Kaltsoyannis N (2004) J Am Chem Soc 126:14533CrossRefGoogle Scholar
  59. 59.
    Häller J, Kaltsoyannis N, Sarsfield MJ, May I, Cornet S, Redmond M, Helliwell M (2007) Inorg Chem 46:4868CrossRefGoogle Scholar
  60. 60.
    Gaunt AJ, Reilly SD, Enriquez AE, Scott BL, Ibers JA, Sekar P, Ingram KIM, Kaltsoyannis N, Neu MP (2008) Inorg Chem 47:29CrossRefGoogle Scholar
  61. 61.
    Ingram KIM, Tassell MJ, Gaunt AJ, Kaltsoyannis N (2008) Inorg Chem 47:7824CrossRefGoogle Scholar
  62. 62.
    Tassell MJ, Kaltsoyannis N (2010) Dalton Trans. doi: 10.1039/c000704h
  63. 63.
    Klamt A (1995) J Phys Chem 99:2224CrossRefGoogle Scholar
  64. 64.
    Klamt A, Schuurmann G (1993) J Chem Soc Perkin Trans 2 5, 799Google Scholar
  65. 65.
    Lewis AKD, Caddick S, Cloke FGN, Billingham NC, Hitchcock PB, Leonard J (2003) J Am Chem Soc 125:10066CrossRefGoogle Scholar
  66. 66.
    Mayer I (1984) Int J Quant Chem 26:151CrossRefGoogle Scholar
  67. 67.
    Mayer I (1983) Chem Phys Lett 97:270CrossRefGoogle Scholar
  68. 68.
    Cavigliasso G, Bridgeman AJ, Ireland LR, Rothery J (2001) J Chem Soc Dalton Trans 2095Google Scholar
  69. 69.
    Brainard RL, Miller TM, Whitesides GM (1986) Organometallics 5:1481CrossRefGoogle Scholar
  70. 70.
    Diversi P, Fasce D, Santini R (1984) J Organomet Chem 269:285CrossRefGoogle Scholar
  71. 71.
    Miyashita A, Ohyoshi M, Shitara H, Nohira H (1988) J Organomet Chem 338:103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Christopher Ryan
    • 1
  • Alexandra K. de K. Lewis
    • 1
  • Stephen Caddick
    • 1
  • Nikolas Kaltsoyannis
    • 1
    Email author
  1. 1.Department of ChemistryUniversity College LondonLondonUK

Personalised recommendations