Theoretical Chemistry Accounts

, Volume 128, Issue 1, pp 91–113 | Cite as

Hydrogenated amorphous silicon nanostructures: novel structure–reactivity relationships for cyclization and ring opening in the gas phase

  • Andrew J. Adamczyk
  • Marie-Francoise Reyniers
  • Guy B. Marin
  • Linda J. Broadbelt
Regular Article


The effects of the reactive center connectivity and internal rotations on the reactivity of hydrogenated silicon nanostructures toward cyclization and ring opening pathways have been investigated. Rate coefficients for 25 cyclization and ring opening reactions for hydrides containing up to eight silicon atoms have been calculated using G3//B3LYP. The overall reactions exhibit two elementary steps. Overcoming the first barrier results in the formation of a hydrogen-bridged cyclic intermediate from a substituted silylene. Passing over the second barrier converts this intermediate into a cyclic silicon hydride. The rate-determining step varied according to the ring size formed and the temperature. Assuming a rate-determining step, values for the single-event Arrhenius pre-exponential factor, \( \tilde{A}\), and the activation energy, Ea, were calculated from G3//B3LYP rate coefficients corrected for internal rotations, and a group additivity scheme was developed to predict \( \tilde{A}\) and Ea. The values predicted by group additivity are more accurate than structure–reactivity relationships currently used in the literature, which rely on a representative \( \tilde{A}\) value for each reaction class and the Evans-Polanyi correlation to predict Ea. Internal rotation corrections played a prominent role in cyclization pathways, impacting \( \tilde{A}\) values for larger ring formation reactions more strongly than any variations in the connectivity of the reactive center.


Isomerization Non-linear Arrhenius plots Pyrolysis Reactive intermediate Ring statistics Silicon hydride 

Supplementary material

214_2010_767_MOESM1_ESM.doc (2.2 mb)
Supplementary Tables (DOC 2.23 mb)


  1. 1.
    Swihart MT, Girshick SL (1999) J Phys Chem B 103:64–76CrossRefGoogle Scholar
  2. 2.
    Wong HW, Li X, Swihart MT, Broadbelt LJ (2004) J Phys Chem A 108:10122–10132CrossRefGoogle Scholar
  3. 3.
    Geng H (2005) Semiconductor manufacturing handbook. McGraw-Hill, USAGoogle Scholar
  4. 4.
    Teo BK, Sun XH (2007) Chem Rev 107:1454–1532CrossRefGoogle Scholar
  5. 5.
    O’Farrell N, Houlton A, Horrocks BR (2006) Int J Nanomed 1:451–472CrossRefGoogle Scholar
  6. 6.
    Stueger H, Fuerpass G, Renger K, Baumgartner J (2005) Organometallics 24:6374–6381CrossRefGoogle Scholar
  7. 7.
    Morisaki Y, Otaka H, Nagai A, Naka K, Chujo Y (2009) Chem Lett 38:498–499CrossRefGoogle Scholar
  8. 8.
    Shimoda T, Matsuki Y, Furusawa M, Aoki T, Yudasaka I, Tanaka H, Iwasawa H, Wang DH, Miyasaka M, Takeuchi Y (2006) Nature 440:783–786CrossRefGoogle Scholar
  9. 9.
    Rosenberg L (2006) Nature 440:749–750CrossRefGoogle Scholar
  10. 10.
    Hengge E, Janoschek R (1995) Chem Rev 95:1495–1526CrossRefGoogle Scholar
  11. 11.
    Hengge E, Bauer G (1975) Monatshefte Fur Chemie 106:503–512CrossRefGoogle Scholar
  12. 12.
    Hengge E, Kovar D (1979) Zeitschrift Fur Anorganische Und Allgemeine Chemie 459:123–130CrossRefGoogle Scholar
  13. 13.
    Kipping FS, James ES (1921) J Chem Soc 119:830Google Scholar
  14. 14.
    Masamune S, Hanzawa Y, Murakami S, Bally T, Blount JF (1982) J Am Chem Soc 104:1150–1153CrossRefGoogle Scholar
  15. 15.
    West R, Indriksons A (1972) J Am Chem Soc 94:6110–6115CrossRefGoogle Scholar
  16. 16.
    Carlson CW, West R (1983) Organometallics 2:1801–1807CrossRefGoogle Scholar
  17. 17.
    Cypryk M, Gupta Y, Matyjaszewski K (1991) J Am Chem Soc 113:1046–1047CrossRefGoogle Scholar
  18. 18.
    Ishikawa M, Kumada M (1972) J Organomet Chem 42:325–332CrossRefGoogle Scholar
  19. 19.
    Watanabe H, Shimoyama H, Muraoka T, Kougo Y, Kato M, Nagai Y (1987) Bull Chem Soc Jpn 60:769–770CrossRefGoogle Scholar
  20. 20.
    Belzner J (1992) J Organomet Chem 430:C51–C55CrossRefGoogle Scholar
  21. 21.
    Suzuki M, Kotani J, Gyobu S, Kaneko T, Saegusa T (1994) Macromolecules 27:2360–2363CrossRefGoogle Scholar
  22. 22.
    Ge YB, Head JD (2002) J Phys Chem B 106:6997–7004CrossRefGoogle Scholar
  23. 23.
    Blinka TA, West R (1986) Organometallics 5:133–139CrossRefGoogle Scholar
  24. 24.
    Sax AF (1986) Chem Phys Lett 129:66–70CrossRefGoogle Scholar
  25. 25.
    Sax AF (1986) Chem Phys Lett 127:163–168CrossRefGoogle Scholar
  26. 26.
    Schoeller WW, Dabisch T (1987) Inorg Chem 26:1081–1086CrossRefGoogle Scholar
  27. 27.
    Mastryukov VS (1992) Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya I Khimicheskaya Tekhnologiya 35:94–97Google Scholar
  28. 28.
    Leong MK, Mastryukov VS, Boggs JE (1994) J Phys Chem 98:6961–6966CrossRefGoogle Scholar
  29. 29.
    Zhao M, Gimarc BM (1996) Inorg Chem 35:5378–5386CrossRefGoogle Scholar
  30. 30.
    Mastryukov VS, Hofmann M, Schaefer HF (1999) J Phys Chem A 103:5581–5584CrossRefGoogle Scholar
  31. 31.
    Swihart MT, Girshick SL (1999) Chem Phys Lett 307:527–532CrossRefGoogle Scholar
  32. 32.
    Tang MS, Wang CZ, Lu WC, Ho KM (2006) Phys Rev B 74Google Scholar
  33. 33.
    Singh R (2008) J Phys Condensed Matter 20Google Scholar
  34. 34.
    Ge YB, Head JD (2004) J Phys Chem B 108:6025–6034CrossRefGoogle Scholar
  35. 35.
    Balamurugan D, Prasad R (2001) Phys Rev B 64Google Scholar
  36. 36.
    Galashev AE, Izmodenov IA (2008) Glass Phys Chem 34:173–181CrossRefGoogle Scholar
  37. 37.
    Li XJ, Li CP, Yang JC, Jalbout AF (2009) Int J Quantum Chem 109:1283–1301CrossRefGoogle Scholar
  38. 38.
    Li CP, Li XJ, Yang JC (2006) J Phys Chem A 110:12026–12034CrossRefGoogle Scholar
  39. 39.
    Yang JC, Bai X, Li CP, Xu WG (2005) J Phys Chem A 109:5717–5723CrossRefGoogle Scholar
  40. 40.
    Li CP, Yang JC, Bai X (2005) Theochem J Mol Struct 755:65–74CrossRefGoogle Scholar
  41. 41.
    Xu WG, Yang JC, Xiao WS (2004) J Phys Chem A 108:11345–11353CrossRefGoogle Scholar
  42. 42.
    Katzer G, Sax AF (2002) J Phys Chem A 106:7204–7215CrossRefGoogle Scholar
  43. 43.
    Katzer G, Ernst MC, Sax AF, Kalcher J (1997) J Phys Chem A 101:3942–3958CrossRefGoogle Scholar
  44. 44.
    Sax AF, Kalcher J (1991) J Phys Chem 95:1768–1783CrossRefGoogle Scholar
  45. 45.
    Wong HW, Nieto JCA, Swihart MT, Broadbelt LJ (2004) J Phys Chem A 108:874–897CrossRefGoogle Scholar
  46. 46.
    Ottosson H, Eklof AM (2008) Coord Chem Rev 252:1287–1314CrossRefGoogle Scholar
  47. 47.
    Becerra R, Cannady JP, Dormer G, Walsh R (2009) Phys Chem Chem Phys 11:5331–5344CrossRefGoogle Scholar
  48. 48.
    Kusukawa T, Shike A, Ando W (1996) Tetrahedron 52:4995–5005CrossRefGoogle Scholar
  49. 49.
    Diez-Gonzalez S, Paugam R, Blanco L (2008) Eur J Organic Chem 19:3298–3307Google Scholar
  50. 50.
    Xu CH, Wakamiya A, Yamaguchi S (2004) Org Lett 6:3707–3710CrossRefGoogle Scholar
  51. 51.
    Zhang SG, Liu JH, Zhang WX, Xi ZF (2009) Prog Chem 21:1487–1493Google Scholar
  52. 52.
    Liu JH, Zhang WX, Xi ZF (2009) Chin J Org Chem 29:491–503Google Scholar
  53. 53.
    Trost BM, Bertogg A (2009) Org Lett 11:511–513CrossRefGoogle Scholar
  54. 54.
    Guida-Pietrasanta F, Boutevin B (2005) Polysilalkylene or silarylene siloxanes said hybrid silicones. Inorganic polymeric nanocomposites and membranes. Springer, Berlin, pp 1–27Google Scholar
  55. 55.
    Li RE, Sheu JH, Su MD (2007) Inorg Chem 46:9245–9253CrossRefGoogle Scholar
  56. 56.
    Segmuller T, Schluter PA, Drees M, Schier A, Nogai S, Mitzel NW, Strassner T, Karsch HH (2006) Dianionic amidinates at silicon and germanium centers: four-, six- and eight-membered rings. In: 11th international symposium on inorganic ring systems (IRIS-11). Elsevier, FinlandGoogle Scholar
  57. 57.
    Broadbelt LJ, Stark SM, Klein MT (1994) Chem Eng Sci 49:4991–5010CrossRefGoogle Scholar
  58. 58.
    Broadbelt LJ, Stark SM, Klein MT (1996) Comput Chem Eng 20:113–129CrossRefGoogle Scholar
  59. 59.
    Broadbelt LJ, Stark SM, Klein MT (1995) Ind Eng Chem Res 34:2566–2573CrossRefGoogle Scholar
  60. 60.
    Broadbelt LJ, Stark SM, Klein MT (1994) Ind Eng Chem Res 33:790–799CrossRefGoogle Scholar
  61. 61.
    Klinke DJ, Broadbelt LJ (1997) Aiche J 43:1828–1837CrossRefGoogle Scholar
  62. 62.
    Susnow RG, Dean AM, Green WH, Peczak P, Broadbelt LJ (1997) J Phys Chem A 101:3731–3740CrossRefGoogle Scholar
  63. 63.
    Broadbelt LJ, Pfaendtner J (2005) Aiche J 51:2112–2121CrossRefGoogle Scholar
  64. 64.
    Evans MG, Polanyi M (1938) Faraday Soc 34:11–29CrossRefGoogle Scholar
  65. 65.
    Girshick SL, Swihart MT, Suh SM, Mahajan MR, Nijhawan S (2000) J Electrochem Soc 147:2303–2311CrossRefGoogle Scholar
  66. 66.
    Ho P, Coltrin ME, Breiland WG (1994) J Phys Chem 98:10138–10147CrossRefGoogle Scholar
  67. 67.
    Benson SW (1976) Thermochemical kinetics, 2nd edn. Wiley, New YorkGoogle Scholar
  68. 68.
    Sumathi R, Carstensen HH, Green WH (2001) J Phys Chem A 105:6910–6925CrossRefGoogle Scholar
  69. 69.
    Sumathi R, Carstensen HH, Green WH (2001) J Phys Chem A 105:8969–8984CrossRefGoogle Scholar
  70. 70.
    Sumathi R, Carstensen HH, Green WH (2002) J Phys Chem A 106:5474–5489CrossRefGoogle Scholar
  71. 71.
    Saeys M, Reyniers MF, Marin GB, Van Speybroeck V, Waroquier M (2004) Aiche J 50:426–444CrossRefGoogle Scholar
  72. 72.
    Saeys M, Reyniers MF, Van Speybroeck V, Waroquier M, Marin GB (2006) ChemPhysChem 7:188–199CrossRefGoogle Scholar
  73. 73.
    Sabbe MK, Reyniers MF, Van Speybroeck V, Waroquier M, Marin GB (2008) ChemPhysChem 9:124–140CrossRefGoogle Scholar
  74. 74.
    Willems PA, Froment GF (1988) Ind Eng Chem Res 27:1959–1966CrossRefGoogle Scholar
  75. 75.
    Willems PA, Froment GF (1988) Ind Eng Chem Res 27:1966–1971CrossRefGoogle Scholar
  76. 76.
    Truong TN (2000) J Chem Phys 113:4957–4964CrossRefGoogle Scholar
  77. 77.
    Zhang SW, Truong TN (2003) J Phys Chem A 107:1138–1147CrossRefGoogle Scholar
  78. 78.
    Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650–7657CrossRefGoogle Scholar
  79. 79.
    Katzer G, Sax AF (2005) J Comput Chem 26:1438–1451CrossRefGoogle Scholar
  80. 80.
    Katzer G, Sax AF (2003) Chem Phys Lett 368:473–479CrossRefGoogle Scholar
  81. 81.
    Ayala PY, Schlegel HB (1998) J Chem Phys 108:2314–2325CrossRefGoogle Scholar
  82. 82.
    Pfaendtner J, Yu X, Broadbelt LJ (2007) Theor Chem Acc 118:881–898CrossRefGoogle Scholar
  83. 83.
    Van Speybroeck V, Vansteenkiste P, Van Neck D, Waroquier M (2005) Chem Phys Lett 402:479–484CrossRefGoogle Scholar
  84. 84.
    Vansteenkiste P, Van Speybroeck V, Marin GB, Waroquier M (2003) J Phys Chem A 107:3139–3145CrossRefGoogle Scholar
  85. 85.
    Ashcraft RW, Green WH (2008) J Phys Chem A 112:9144–9152CrossRefGoogle Scholar
  86. 86.
    Catoire L, Swihart MT, Gail S, Dagaut P (2003) Int J Chem Kinet 35:453–463CrossRefGoogle Scholar
  87. 87.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D01. Gaussian, Inc, WallingfordGoogle Scholar
  88. 88.
    Kalcher J, Sax AF (1992) Theochem J Mol Struct 85:287–302CrossRefGoogle Scholar
  89. 89.
    Adamczyk AJ, Reyniers MF, Marin GB, Broadbelt LJ (2010) ChemPhysChem (in press)Google Scholar
  90. 90.
    Scott AP, Radom L (1996) J Phys Chem 100:16502–16513CrossRefGoogle Scholar
  91. 91.
    Vansteenkiste VVS P, Verniest G, De Kimpe N, Waroquier M (2006) J Phys Chem A 110:3838–3844CrossRefGoogle Scholar
  92. 92.
    Martin JML, de Oliveira G (1999) J Chem Phys 111:1843–1856CrossRefGoogle Scholar
  93. 93.
    McQuarrie DA, Simon JD (1999) Molecular thermodynamics. University Science Book, SausalitoGoogle Scholar
  94. 94.
    Hirschfelder JO, Wigner E (1939) J Chem Phys 7:616–628CrossRefGoogle Scholar
  95. 95.
    Fernandez-Ramos A, Ellingson BA, Meana-Paneda R, Marques JMC, Truhlar DG (2007) Theor Chem Acc 118:813–826CrossRefGoogle Scholar
  96. 96.
    Truhlar DG, Garrett BC (1984) Annu Rev Phys Chem 35:159–189CrossRefGoogle Scholar
  97. 97.
    Truhlar DG, Gordon MS (1990) Science 249:491–498CrossRefGoogle Scholar
  98. 98.
    Adamczyk AJ, Reyniers M-F, Marin GB, Broadbelt LJ (2009) J Phys Chem A 113:10933–10946CrossRefGoogle Scholar
  99. 99.
    Gupta A, Swihart MT, Wiggers H (2009) Adv Funct Mater 19:696–703CrossRefGoogle Scholar
  100. 100.
    Wiggers H, Starke R, Roth P (2001) Chem Eng Technol 24:261–264CrossRefGoogle Scholar
  101. 101.
    Becerra R, Frey HM, Mason BP, Walsh R, Gordon MS (1992) J Am Chem Soc 114:2151–2752CrossRefGoogle Scholar
  102. 102.
    McCarthy MC, Yu Z, Sari L, Schaefer HF, Thaddeus P (2006) J Chem Phys 124:7CrossRefGoogle Scholar
  103. 103.
    Street RA (1991) Hydrogenated amorphous silicon. Cambridge University Press, LondonCrossRefGoogle Scholar
  104. 104.
    Schulke W (1981) Philos Mag B Phys Condens Matter Stat Mech Electronic Optical Magn Prop 43:451–468Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Andrew J. Adamczyk
    • 1
  • Marie-Francoise Reyniers
    • 2
  • Guy B. Marin
    • 2
  • Linda J. Broadbelt
    • 1
  1. 1.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Laboratory for Chemical TechnologyGhent UniversityGhentBelgium

Personalised recommendations