Skip to main content

Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg

Abstract

Correlation consistent basis sets of double-ζ through quintuple-ζ quality for the alkali and alkaline earth metals Li, Be, Na, and Mg have been developed, including the valence (cc-pVnZ), augmented valence (aug-cc-pVnZ), core-valence (cc-pCVnZ), and weighted core-valence (cc-pwCVnZ) basis sets. The basis sets are also re-contracted for Douglas–Kroll scalar relativistic calculations and are found to be superior to non-relativistic basis sets in recovering scalar relativistic effects. CCSD(T) computations have been performed with these basis sets, and a series of properties have been examined, including atomic ionization potentials and electron affinities, optimized molecular geometries, harmonic vibrational frequencies, atomization energies, and enthalpies of formation for the molecules Li2, LiF, BeO, BeF, BeH2, BeF2, Na2, NaF, MgO, MgF, MgH2, and MgF2.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Dunning TH Jr (1989) J Chem Phys 90:1007–1023

    CAS  Article  Google Scholar 

  2. 2.

    Dunning TH Jr, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244–9253

    CAS  Article  Google Scholar 

  3. 3.

    van Mourik T, Dunning TH Jr (1999) Int J Quantum Chem 76:205

    Google Scholar 

  4. 4.

    Wilson AK, van Mourik T, Dunning TH Jr (1996) J Mol Struct (Theochem) 388:339

    CAS  Google Scholar 

  5. 5.

    Wilson AK, Woon DE, Peterson KA, Dunning TH Jr (1999) J Chem Phys 110:7667–7676

    CAS  Article  Google Scholar 

  6. 6.

    Woon DE, Dunning TH Jr (1994) J Chem Phys 100:2975

    CAS  Article  Google Scholar 

  7. 7.

    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358–1371

    CAS  Article  Google Scholar 

  8. 8.

    Woon DE, Dunning TH Jr (1995) J Chem Phys 103:4572–4585

    CAS  Article  Google Scholar 

  9. 9.

    Feller D (1992) J Chem Phys 96:6104–6114

    CAS  Article  Google Scholar 

  10. 10.

    Halkier A, Helgaker T, Jørgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243–252

    CAS  Article  Google Scholar 

  11. 11.

    Peterson KA, Woon DE, Dunning TH Jr (1994) J Chem Phys 100:7410

    CAS  Article  Google Scholar 

  12. 12.

    Karton A, Martin JML (2006) Theor Chem Acc 115:330

    CAS  Article  Google Scholar 

  13. 13.

    Lee EC, Kim D, Jurečka P, Tarakeshwar T, Hobza P, Kim KS (2007) J Phys Chem A 111:3446

    CAS  Article  Google Scholar 

  14. 14.

    Schwartz C (1962) Phys Rev 126:1015

    CAS  Article  Google Scholar 

  15. 15.

    Wilson AK, Dunning TH Jr (1997) J Chem Phys 106:8718–8726

    CAS  Article  Google Scholar 

  16. 16.

    Peterson KA, Dunning TH Jr (1995) J Phys Chem 99:3898–3901

    CAS  Article  Google Scholar 

  17. 17.

    Kendall RA, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796–6806

    CAS  Article  Google Scholar 

  18. 18.

    Peterson KA (2003) J Chem Phys 119:11099–11112

    CAS  Article  Google Scholar 

  19. 19.

    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123

    CAS  Article  Google Scholar 

  20. 20.

    Peterson KA, Shepler BC, Figgen D, Stoll H (2006) J Phys Chem A 110:13877–13883

    CAS  Article  Google Scholar 

  21. 21.

    Balabanov NB, Peterson KA (2005) J Chem Phys 123:064107

    Article  Google Scholar 

  22. 22.

    Balabanov NB, Peterson KA (2006) J Chem Phys 125:074110

    Article  Google Scholar 

  23. 23.

    Peterson KA, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101

    Article  Google Scholar 

  24. 24.

    Peterson KA, Puzzarini C (2005) Theor Chem Acc 114:283

    CAS  Article  Google Scholar 

  25. 25.

    Figgen D, Peterson KA, Dolg M, Stoll H (2009) J Chem Phys 130:164108

    Article  Google Scholar 

  26. 26.

    Peterson KA, Dunning TH Jr (2002) J Chem Phys 117:10548–10560

    CAS  Article  Google Scholar 

  27. 27.

    DeYonker NJ, Peterson KA, Wilson AK (2007) J Phys Chem A 111:11383

    CAS  Article  Google Scholar 

  28. 28.

    de Jong WA, Harrison RJ, Dixon DA (2001) J Chem Phys 114:48

    Article  Google Scholar 

  29. 29.

    Peterson KA, Adler TB, Werner H-J (2008) J Chem Phys 128:084102

    Article  Google Scholar 

  30. 30.

    Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175

    CAS  Article  Google Scholar 

  31. 31.

    Yousaf KE, Peterson KA (2008) J Chem Phys 129:184108

    Article  Google Scholar 

  32. 32.

    Yousaf KE, Peterson KA (2009) Chem Phys Lett 476:303

    CAS  Article  Google Scholar 

  33. 33.

    Hill JG, Mazumder S, Peterson KA (2010) J Chem Phys 132:054108

    Article  Google Scholar 

  34. 34.

    Peterson KA (2007) Annu Rep Comput Chem 3:195

    CAS  Article  Google Scholar 

  35. 35.

    Woon DE, Dunning TH Jr (unpublished)

  36. 36.

    Feller D (1996) J Comp Chem 17:1571–1586

    CAS  Google Scholar 

  37. 37.

    Schuchardt KL, Didier BT, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052

    CAS  Article  Google Scholar 

  38. 38.

    Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical recipes in FORTRAN 77: the art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  39. 39.

    DeYonker NJ, Cundari TR, Wilson AK (2006) J Chem Phys 124:114104

    Article  Google Scholar 

  40. 40.

    DeYonker NJ, Grimes T, Yockel SM, Dinescu A, Mintz BJ, Cundari TR, Wilson AK (2006) J Chem Phys 125:104111

    Article  Google Scholar 

  41. 41.

    DeYonker NJ, Ho DS, Wilson AK, Cundari TR (2007) J Phys Chem A 111:10776–10780

    CAS  Article  Google Scholar 

  42. 42.

    DeYonker NJ, Mintz BJ, Cundari TR, Wilson AK (2008) J Chem Theory Comp 4:328–334

    CAS  Article  Google Scholar 

  43. 43.

    DeYonker NJ, Peterson KA, Steyl G, Wilson AK, Cundari TR (2007) J Phys Chem A 111:11269

    CAS  Article  Google Scholar 

  44. 44.

    Koput J, Carter S, Peterson KA, Theodorakopoulos G (2002) J Chem Phys 117:1529

    CAS  Article  Google Scholar 

  45. 45.

    Koput J, Peterson KA (2002) J Chem Phys 116:9255

    CAS  Article  Google Scholar 

  46. 46.

    Koput J, Peterson KA (2003) J Phys Chem A 107:3981–3986

    CAS  Article  Google Scholar 

  47. 47.

    Koput J, Peterson KA (2006) J Chem Phys 125:044306

    Article  Google Scholar 

  48. 48.

    Li H, Le Roy RJ (2006) J Chem Phys 125:044307

    Article  Google Scholar 

  49. 49.

    Li H, Le Roy RJ (2007) J Phys Chem A 111:6248

    CAS  Article  Google Scholar 

  50. 50.

    Roos B, Salez C, Veillard A, Clementi E IBM Research RJ518 (1968), as modified by TH Dunning, Jr and RM Pitzer

  51. 51.

    Roothaan CCJ, Bagus PS (1963) Meth Comp Phys 2:47

    Google Scholar 

  52. 52.

    H-J Werner, PJ Knowles, R Lindh, FR Manby, M Schütz et al. (2009) MOLPRO, version 2009.1, a package of ab initio programs, see http://www.molpro.net

  53. 53.

    Woon DE, Dunning TH Jr (1992) J Chem Phys 98:1358–1371

    Article  Google Scholar 

  54. 54.

    Bartlett RJ, Stanton JF (1994) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 5. VCH Publishers Inc, New York, p 65

  55. 55.

    Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910–1918

    CAS  Article  Google Scholar 

  56. 56.

    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    CAS  Article  Google Scholar 

  57. 57.

    Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (2005) In: Linstrom PJ, Mallard WG (eds) NIST chemistry webbook, NIST standard reference database number 69. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  58. 58.

    Raffenetti RC (1973) J Chem Phys 58:4452–4458

    CAS  Article  Google Scholar 

  59. 59.

    Partridge H (1989) J Chem Phys 90:104

    Article  Google Scholar 

  60. 60.

    Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of diatomic molecules. Van Nostrand, Princeton

  61. 61.

    Spitznagel G, Clark T, PvR Schleyer, Hehre WJ (1987) J Comp Chem 8:1109

    CAS  Article  Google Scholar 

  62. 62.

    Bauschlicher CW, Partridge H (1995) Chem Phys Lett 240:533

    CAS  Article  Google Scholar 

  63. 63.

    Martin JML (1998) J Chem Phys 108:2791–2800

    CAS  Article  Google Scholar 

  64. 64.

    Wang NX, Wilson AK (2003) J Phys Chem A 107:6720–6724

    CAS  Article  Google Scholar 

  65. 65.

    Bauschlicher CW, Partridge H (1997) Chem Phys Lett 276:47–54

    CAS  Article  Google Scholar 

  66. 66.

    Martin JML, Uzan O (1998) Chem Phys Lett 282:16–24

    CAS  Article  Google Scholar 

  67. 67.

    Wilson AK, Dunning TH Jr (2003) J Chem Phys 119:11712–11714

    CAS  Article  Google Scholar 

  68. 68.

    Wilson AK, Dunning TH Jr (2004) J Phys Chem A 108:3129–3133

    CAS  Article  Google Scholar 

  69. 69.

    Wang NX, Wilson AK (2005) J Phys Chem A 109:7189–7196

    Google Scholar 

  70. 70.

    Prascher BP, Lucente-Schultz RM, Wilson AK (2009) Chem Phys 359:1

    CAS  Article  Google Scholar 

  71. 71.

    Iron MA, Oren M, Martin JML (2003) Mol Phys 101:1345

    CAS  Article  Google Scholar 

  72. 72.

    Kagi E, Hirano T, Takano S, Kawaguchi K (1994) J Mol Spectrosc 168:109

    CAS  Article  Google Scholar 

  73. 73.

    Törring T, Hoeft J (1986) Chem Phys Lett 126:477

    Article  Google Scholar 

  74. 74.

    Kagi E, Kawaguchi K (2006) J Mol Struct 795:179–184

    CAS  Article  Google Scholar 

  75. 75.

    Mürtz P, Thümmel H, Pfelzer C, Urban W (1995) Mol Phys 86:513

    Google Scholar 

  76. 76.

    Lee TJ, Taylor PR (1989) Int J Quantum Chem Symp 23:199

    CAS  Google Scholar 

  77. 77.

    Lorenzen CJ, Niemax K (1982) J Phys B 15:L139–L145

    CAS  Article  Google Scholar 

  78. 78.

    Beigang R, Schmidt D, West PJ (1983) J Physics (Paris), Colloquium C7 44:229–237

    Google Scholar 

  79. 79.

    Baugh JF, Burkhardt CE, Leventhal JJ, Bergeman T (1998) Phys Rev A 58:1585

    CAS  Article  Google Scholar 

  80. 80.

    Ciocca M, Burkhardt CE, Leventhal JJ, Bergeman T (1992) Phys Rev A 45:4720–4730

    CAS  Article  Google Scholar 

  81. 81.

    Chang ES (1987) Phys Scr 35:792–797

    CAS  Article  Google Scholar 

  82. 82.

    Kaufman V, Martin WC (1991) J Phys Chem Ref Data 20:83–153

    CAS  Article  Google Scholar 

  83. 83.

    Martin WC, Musgrove A, Kotochigova S, Sansonetti JE, (2003) National Institute of Standards and Technology, Gaithersburg. http://www.nist.gov/physlab/data/ion_energy.cfm

  84. 84.

    Wang X, Andrews L (2005) Inorg Chem 44:610–614

    CAS  Article  Google Scholar 

  85. 85.

    Yu S, Shayesteh A, Bernath PF, Koput J (2005) J Chem Phys 123:134303

    Article  Google Scholar 

  86. 86.

    Wang X, Andrews L (2004) J Phys Chem A 108:11511

    CAS  Article  Google Scholar 

  87. 87.

    Snelson A (1966) J Phys Chem 70:3208

    CAS  Article  Google Scholar 

  88. 88.

    Shayesteh A, Tereszchuk K, Bernath PF, Colin R (2003) J Chem Phys 118:3622

    CAS  Article  Google Scholar 

  89. 89.

    Shayesteh A, Appadoo DRT, Gordon I, Bernath PF (2003) J Chem Phys 119:7785

    CAS  Article  Google Scholar 

  90. 90.

    Chase MW (1998) J Phys Chem Ref Data 9:1

    Google Scholar 

Download references

Acknowledgments

AKW gratefully acknowledges support from the National Science Foundation for research (CHE-0239555 and CHE-0809762) and for computing support (CHE-0342824 and CHE-0741936), and support from the United States Department of Education for the Center for Advanced Scientific Computing and Modeling (CASCaM). KAP acknowledges the support of the National Science Foundation (CHE-0723997). Much of this work was originated under the support of the Division of Chemical Sciences in the Office of Basis Energy Sciences of the U.S. Department of Energy at Pacific Northwest National Laboratory (PNNL), a multiprogram national laboratory operated by Battelle Memorial Institute, under Contract No. DE-AC06-76RLO 1830.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kirk A. Peterson or Angela K. Wilson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 126 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Prascher, B.P., Woon, D.E., Peterson, K.A. et al. Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg. Theor Chem Acc 128, 69–82 (2011). https://doi.org/10.1007/s00214-010-0764-0

Download citation

Keywords

  • Correlation consistent
  • Gaussian basis sets
  • Alkali metal
  • Alkaline earth metal
  • Core-valence