Advertisement

Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 641–650 | Cite as

Perfluorinated exohedral potassium-metallofullerene K···C n F n (n = 20 or 60): partial interior and surface excess electron state

  • Yin-Feng Wang
  • Ying Li
  • Zhi-Ru LiEmail author
  • Fang Ma
  • Di Wu
  • Chia-Chung Sun
Regular Article

Abstract

The fullerene [60] can bind a variety of metal to form exohedral metallofullerenes with special chemical and physical properties. However, how about the structure and properties of the perfluorinated exohedral metallofullerene with excess electron? The structures of K···C20F20 (C 5v), K···C60F60 (C 3v), and K···C60F60 (C 6v) with all real frequencies are represented at the B3LYP/6-31G(d) theory level. The large ionization potentials of 7.066 ~ 7.422 eV suggest the large stabilities of them. Owing to the interpolarization between K and C n F n (n = 20 or 60) cage, an electron transfers from K atom to the perfluorinated cage (C20F20 or C60F60) to form excess electron and long K+···C n F n ionic bond (length > 2.9 Å) with interaction energies of −78.24 ~ −93.72 kcal/mol. Comparing to the solvated electron e@C n F n (n = 20 or 60) with interior state, under the effect of counterion K+, partial excess electron is pulled from the interior to the surface of the cage to form partial interior and surface excess electron state. It is found that cage size and shape influence excess electron absorption spectrum, which may be important for the design of the new optical and photoelectric materials or devices with good performances.

Graphical abstract

Existence of the cage and counterion cause the formation of partial interior and surface excess electron state.

Keywords

Excess electron Perfluorinated exohedral metallofullerene Partial interior and surface state 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20773046).

References

  1. 1.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162 (London)CrossRefGoogle Scholar
  2. 2.
    Krátschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Nature 347:354 (London)CrossRefGoogle Scholar
  3. 3.
    Bethune DS, Johnson RD, Salem JR, De Vries MS, Yannoni CS (1993) Nature 366:123 (London)CrossRefGoogle Scholar
  4. 4.
    Shinohara H (2000) Rep Prog Phys 63:843CrossRefGoogle Scholar
  5. 5.
    Shinohara H, Tanaka M, Sakata M, Hashizume T, Sakurai T (1996) Mater Sci Forum 232:207CrossRefGoogle Scholar
  6. 6.
    Vostrowsky O, Hirsch A (2006) Chem Rev 106:5191CrossRefGoogle Scholar
  7. 7.
    Park JM, Tarakeshwar P, Kim KS (2000) J Chem Phys 116:10684CrossRefGoogle Scholar
  8. 8.
    Loboda O, Jensen VR, Borve KJ (2006) Fullerenes Nanotubes Carbon Nanostruct 14:365CrossRefGoogle Scholar
  9. 9.
    Lu G, Deng K, Wu H (2006) J Chem Phys 124(5):54305CrossRefGoogle Scholar
  10. 10.
    Hutchison K, Gao J, Schick G, Rubin Y, Wudl F (1999) J Am Chem Soc 121:5611CrossRefGoogle Scholar
  11. 11.
    Makarova TL, Sundqvist B, HNhne R, Esquinazi P, Kopelevich Y, Scharff P, Davydov VA, Kashevarova LS, Rakhmanina AV (2001) Nature 413:716CrossRefGoogle Scholar
  12. 12.
    Bendikov M, Wudl F, Perepichka DF (2004) Chem Rev 104:4891CrossRefGoogle Scholar
  13. 13.
    Nishibayashi Y, Saito M, Uemura S, Takekuma S-I, Takekuma H, Yoshida Z-i (2004) Nature 428:279CrossRefGoogle Scholar
  14. 14.
    Nakamura E, Isobe H (2003) Acc Chem Res 36:807CrossRefGoogle Scholar
  15. 15.
    Stephens A, Green MLH (1997) Adv Inorg Chem 44:1CrossRefGoogle Scholar
  16. 16.
    Mathur P, Mavunkal IJ, Umbarkar SB (1998) J Cluster Sci 9:393CrossRefGoogle Scholar
  17. 17.
    Balch AL, Olmstead MM (1998) Chem Rev 98:2123CrossRefGoogle Scholar
  18. 18.
    Govindaraj A, Satishkumar BC, Nath M, Rao CNR (2000) Chem Mater 12:202CrossRefGoogle Scholar
  19. 19.
    Hermans S, Sloan J, Shephard DS, Johnson BFG, Green MLH (2002) Chem Commun 276Google Scholar
  20. 20.
    Prinzbach H, Weber K (1994) Angew Chem Int Ed Engl 33:2239CrossRefGoogle Scholar
  21. 21.
    Wahl F, Weiler A, Landenberger P, Sackers E, Voss T, Haas A, Lieb M, Hunkler D, Wörth J, Knothe L, Prinzbach H (2006) Chem Eur J 12:6255CrossRefGoogle Scholar
  22. 22.
    Cioslowski J, Edgington L, Stefanov BB (1995) J Am Chem Soc 117:10381CrossRefGoogle Scholar
  23. 23.
    Holloway JH, Hope EG, Taylor R, Langley JG, Avent AG, Dennis TJ, Hare JP, Kroto HW, Walton DRM (1991) J Chem Soc Chem Commun 966Google Scholar
  24. 24.
    Scuseria GE (1991) Chem Phys Lett 176:423CrossRefGoogle Scholar
  25. 25.
    Scuseria GE, Odom GK (1992) Chem Phys Lett 195:531CrossRefGoogle Scholar
  26. 26.
    Kudin KN, Bettinger HF, Scuseria GE (2001) Phys Rev B 63:045413CrossRefGoogle Scholar
  27. 27.
    Bettinger HF, Kudin KN, Scuseria GE (2001) J Am Chem Soc 123:12849CrossRefGoogle Scholar
  28. 28.
    Jia J, Wu H-S, Xu X-H, Zhang X-M, Jiao H (2008) J Am Chem Soc 130:3985CrossRefGoogle Scholar
  29. 29.
    Hart EJ, Boag JW (1962) J Am Chem Soc 84:4090CrossRefGoogle Scholar
  30. 30.
    Hammer NI, Shin J-W, Headrick J, Diken EG, Roscioli JR, Weddle GH, Johnson MA (2004) Science 306:675CrossRefGoogle Scholar
  31. 31.
    Verlet JR, Bragg AE, Kammrath A, Cheshnovsky O, Neumark DM (2005) Science 307:93CrossRefGoogle Scholar
  32. 32.
    Page CC, Moster CC, Chen X, Dutton L (1999) Nature 402:47 (London)CrossRefGoogle Scholar
  33. 33.
    Tributsch H, Pohlmann L (1998) Science 279:1891CrossRefGoogle Scholar
  34. 34.
    Desfrançois C, Carles S, Schermann JP (2000) Chem Rev 100:3943CrossRefGoogle Scholar
  35. 35.
    Lee HM, Lee S, Kim KS (2003) J Chem Phys 119:187CrossRefGoogle Scholar
  36. 36.
    Li Y, Li Z-R, Wu D, Li RY, Hao XY, Sun C-C (2004) J Phys Chem B 108:3145CrossRefGoogle Scholar
  37. 37.
    Chen W, Li Z-R, Wu D, Li R-Y, Sun C-C (2005) J Phys Chem B 109:601CrossRefGoogle Scholar
  38. 38.
    Matsuishi S, Toda Y, Miyakawa M, Hayashi K, Kamiya T, Hirano M, Tanaka I, Hosono H (2003) Science 301:626CrossRefGoogle Scholar
  39. 39.
    Chiesa M, Paganini MC, Giamello E, Murphy DM, Di Valentin C, Gb Pacchioni (2006) Acc Chem Res 39:861CrossRefGoogle Scholar
  40. 40.
    Edwards PP, Anderson PA, Thomas JM (1996) Acc Chem Res 29:23CrossRefGoogle Scholar
  41. 41.
    Srdanov VI, Stucky GD, Lippmaa E, Engelhardt G (1998) Phys Rev Lett 80:2449CrossRefGoogle Scholar
  42. 42.
    Bragg AE, Verlet JRR, Kammrath A, Cheshnovsky O, Neumark DM (2004) Science 306:669CrossRefGoogle Scholar
  43. 43.
    Turi L, Sheu W-S, Rossky PJ (2005) Science 309:914CrossRefGoogle Scholar
  44. 44.
    Coe JV, Lee GH, Eaton JG, Arnold ST, Sarkas HW, Bowen KH, Ludewigt C, Worsnop DR (1990) J Chem Phys 92:3980CrossRefGoogle Scholar
  45. 45.
    Barnett RN, Landman U, Scharf D, Jortner J (1989) Acc Chem Res 22:350CrossRefGoogle Scholar
  46. 46.
    Coe JV (2001) Int Rev Phys Chem 20:33CrossRefGoogle Scholar
  47. 47.
    Jordan KD (2004) Science 306:618CrossRefGoogle Scholar
  48. 48.
    Sommerfeld T, Jordan KD (2006) J Am Chem Soc 128:5828CrossRefGoogle Scholar
  49. 49.
    Paul A, Wannere CS, Kasalova V, Schleyer Paul VR, Schaefer HF III (2005) J Am Chem Soc 127:15457CrossRefGoogle Scholar
  50. 50.
    Irikura KK (2008) J Phys Chem A 112:983CrossRefGoogle Scholar
  51. 51.
    Zhang C-Y, Wu H-S, Jiao H (2007) J Mol Model 13:499CrossRefGoogle Scholar
  52. 52.
    Wang Y-F, Li Z-R, Wu D, Sun C-C, Gu FL (2010) J Comput Chem 31:195CrossRefGoogle Scholar
  53. 53.
    Simons J (2008) J Phys Chem A 112:6401CrossRefGoogle Scholar
  54. 54.
    Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735CrossRefGoogle Scholar
  55. 55.
    Carpenter JE, Weinhold F (1988) J Mol Struct 169:41 (THEOCHEM)Google Scholar
  56. 56.
    Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF III, Sreela N, Ellison GB (2002) Chem Rev 102:231CrossRefGoogle Scholar
  57. 57.
    Shkrob IA (2007) J Phys Chem A 111:5223CrossRefGoogle Scholar
  58. 58.
    Zimmerman JA, Eyler JR, Bach SBH, McElvany SW (1991) J Chem Phys 94:3556CrossRefGoogle Scholar
  59. 59.
    Paul A, Wannere CS, Kasalova V, Schleyer Paul VR, Schaefer HF III (2005) J Am Chem Soc 127:15457CrossRefGoogle Scholar
  60. 60.
    Khan A (2005) Chem Phys Lett 401:85CrossRefGoogle Scholar
  61. 61.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364CrossRefGoogle Scholar
  62. 62.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215CrossRefGoogle Scholar
  63. 63.
    Szalewicz K, Jeziorski B (1999) J Chem Phys 109:1198CrossRefGoogle Scholar
  64. 64.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  65. 65.
    Hobza P, Havlas Z (1998) Theor Chem Acc 99:372Google Scholar
  66. 66.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, EharaM HadaM, Toyota K, Fukuda R, Hasegawa J, Shida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li KnoxJE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision E.01. Gaussian Inc., Wallingford, CTGoogle Scholar
  67. 67.
    Zhou Z, Parr RG, Garst JF (1988) Tetrahedron Lett 29:4843CrossRefGoogle Scholar
  68. 68.
    Zhou Z, Parr RG, Garst JF (1989) J Am Chem Soc 111:7371CrossRefGoogle Scholar
  69. 69.
    Zhou Z, Parr RG (1990) J Am Chem Soc 112:5720CrossRefGoogle Scholar
  70. 70.
    Parr RG, Zhou Z (1993) Acc Chem Res 26:256CrossRefGoogle Scholar
  71. 71.
    Aihara J (1999) J Phys Chem A 103:7478CrossRefGoogle Scholar
  72. 72.
    Choi YC, Kim WY, Lee HM, Kim KS (2009) J Chem Theory Comput 5:1216CrossRefGoogle Scholar
  73. 73.
    Kim KS, Park JM, Kim J, Suh SB, TarakeshwarP, Lee HM, Park SS (2000) 11: 2425Google Scholar
  74. 74.
    Durand G, Spiegelmann F, Poncharal PH, Labastie P, ĽHermite J-M, Sence M (1999) J Chem Phys 110:7884CrossRefGoogle Scholar
  75. 75.
    Coe JV, Williams SM, Bowen KH (2008) Int Rev Phys Chem 27:27CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yin-Feng Wang
    • 1
  • Ying Li
    • 1
  • Zhi-Ru Li
    • 1
    Email author
  • Fang Ma
    • 1
  • Di Wu
    • 1
  • Chia-Chung Sun
    • 1
  1. 1.State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical ChemistryJilin UniversityChangchunChina

Personalised recommendations