Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 627–639 | Cite as

Theoretical studies on the hydration of formic acid by ab initio and ABEEMσπ fluctuating charge model

  • Shu-Ling Chen
  • Dong-Xia Zhao
  • Li-Dong Gong
  • Zhong-Zhi YangEmail author
Regular Article


The interaction between formic acid (FA) and water was systemically investigated by atom-bond electronegativity equalization method fused into molecular mechanics (ABEEMσπ/MM) and ab initio methods. The geometries of 20 formic acid–water complexes (FA–water) were obtained using B3LYP/aug-cc-pVTZ level optimizations, and the energies were determined at the MP2/aug-cc-pVTZ level with basis set superposition error (BSSE) and zero-point vibrational energy (ZPVE) corrections. The ABEEMσπ potential model gives reasonable properties of these clusters when compared with the present ab initio data. For interaction energies, the root mean square deviation is 0.74 kcal/mol, and the linear coefficient reaches 0.993. Next, FA in aqueous solution was also studied. The hydrogen-bonding pattern due to the interactions with water has been analyzed in detail. Furthermore, the ABEEMσπ charges changed when H2O interacted with the FA molecule, especially at the sites where the hydrogen bonds form. These results show that the ABEEMσπ fluctuating charge model is fine giving the overall characteristic hydration properties of FA–water systems in good agreement with the high-level ab initio calculations.


ABEEMσπ fluctuating charge model Ab initio calculation Hydrogen bond Formic acid–water complex 



We are very grateful to the editor and reviewers’ nice suggestions on the manuscript. We also greatly thank Professor Jay William Ponder for providing the Tinker programs. This work was supported by the grant from the National Natural Science Foundation of China (No. 20633050, 20703022 and 20873055).

Supplementary material

214_2010_762_MOESM1_ESM.pdf (93 kb)
Supplementary material 1 (PDF 92 kb)


  1. 1.
    Graedel TE, Weschler CJ (1981) Rev Geophys Space Phys 19:505–539CrossRefGoogle Scholar
  2. 2.
    Zhao J, Khalizov A, Zhang R (2009) J Phys Chem A 113:680–689CrossRefGoogle Scholar
  3. 3.
    Aloisio S, Francisco JS (2000) J Am Chem Soc 122:9196–9200CrossRefGoogle Scholar
  4. 4.
    Henon E, Canneaux S, Bohr F, Dóbé S (2003) Phys Chem Chem Phys 5:333–341CrossRefGoogle Scholar
  5. 5.
    Richmond G (2001) Annu Rev Phys Chem 52:357–389CrossRefGoogle Scholar
  6. 6.
    Krisch MJ, Auria RD, Brown MA, Tobias DJ, Hemminger JC (2007) J Phys Chem C 111:13497–13509CrossRefGoogle Scholar
  7. 7.
    Aloisio S, Hintze PE, Vaida V (2002) J Phys Chem A 106:363–370CrossRefGoogle Scholar
  8. 8.
    Åstrand PO, Karlstrom G, Engdahl A, Nelander B (1995) J Chem Phys 102:3534–3554CrossRefGoogle Scholar
  9. 9.
    Kumaresan R, Kolandaivel P (1995) Z Phys Chem 192:191Google Scholar
  10. 10.
    Priem D, Ha TK, Bauder A (2000) J Chem Phys 113:169–175CrossRefGoogle Scholar
  11. 11.
    Rablen PR, Lockman JW, Jorgensen WL (1998) J Phys Chem A 102:3782–3797CrossRefGoogle Scholar
  12. 12.
    Zhou ZY, Shi Y, Zhou XM (2004) J Phys Chem A 108:813–822CrossRefGoogle Scholar
  13. 13.
    Raub S, Marian CM (2007) J Comput Chem 28:1503–1515CrossRefGoogle Scholar
  14. 14.
    Wei DQ, Truchon JF, Sirois S, Salahub DR (2002) J Chem Phys 116:6028–6038CrossRefGoogle Scholar
  15. 15.
    Akiya N, Savage PE (1998) AIChE J 44:405–415CrossRefGoogle Scholar
  16. 16.
    Chelli R, Righini R, Califano S (2005) J Phys Chem B 109:17006–17013CrossRefGoogle Scholar
  17. 17.
    Velardez G, Heully JL, Beswick JA, Daudey JP (1999) Phys Chem Commun 2:24–29Google Scholar
  18. 18.
    Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789CrossRefGoogle Scholar
  19. 19.
    Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124Google Scholar
  20. 20.
    Treutler O, Ahlrichs R (1995) J Chem Phys 102:346–354CrossRefGoogle Scholar
  21. 21.
    Hehre WJ, Random L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  22. 22.
    Dunning TH Jr (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  23. 23.
    Woon DE, Dunning THJ (1993) J Chem Phys 98:1358–1365CrossRefGoogle Scholar
  24. 24.
    Helgaker T, Jorgensen P, Olsen J (2000) Molecular electronic-structure theory, chap 15. Wiley, ChichesterGoogle Scholar
  25. 25.
    Lii J-H (2002) Molecular mechanics (MM4). J Phys Chem A 106:8667–8679CrossRefGoogle Scholar
  26. 26.
    Allinger NL, Zhu ZS, Chen K (1992) J Am Chem Soc 114:6120–6133CrossRefGoogle Scholar
  27. 27.
    Halgren T (1996) J Comput Chem 17:490, 520, 553Google Scholar
  28. 28.
    Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) J Comput Chem 4:187–217CrossRefGoogle Scholar
  29. 29.
    Wang J, Cleplak P, Kollman PJ (2000) J Comput Chem 21:1049–1074CrossRefGoogle Scholar
  30. 30.
    Jorgensen WL (2007) J Chem Theory Comput 3:1877–1885CrossRefGoogle Scholar
  31. 31.
    Rick SW, Berne BJ (1996) J Am Chem Soc 118:672–679CrossRefGoogle Scholar
  32. 32.
    Rick SW, Stuart SJ, Berne BJ (1994) J Chem Phys 101:6141–6156CrossRefGoogle Scholar
  33. 33.
    Yang ZZ, Wu Y, Zhao DX (2004) J Chem Phys 120:2541–2557CrossRefGoogle Scholar
  34. 34.
    Wu Y, Yang ZZ (2004) J Phys Chem A 108:7563–7576CrossRefGoogle Scholar
  35. 35.
    Li X, Yang ZZ (2005) J Chem Phys 122:084514CrossRefGoogle Scholar
  36. 36.
    Li X, Yang ZZ (2005) J Phys Chem A 109:4102–4111CrossRefGoogle Scholar
  37. 37.
    Zhang Q, Yang ZZ (2005) Chem Phys Lett 403:242–247CrossRefGoogle Scholar
  38. 38.
    Yang ZZ, Qian P (2006) J Chem Phys 125:064311CrossRefGoogle Scholar
  39. 39.
    Yang ZZ, Zhang Q (2006) J Comput Chem 27:1–10CrossRefGoogle Scholar
  40. 40.
    Guan QM, Yang ZZ (2007) J Theor Comput Chem 6:731–746CrossRefGoogle Scholar
  41. 41.
    Cong Y, Yang ZZ (2000) Chem Phys Lett 316:324–329CrossRefGoogle Scholar
  42. 42.
    Zhao DX, Liu C, Wang FF, Yu CY, Gong LD, Liu SB, Yang ZZ (2010) J Chem Theory Comput 6:795–804CrossRefGoogle Scholar
  43. 43.
    Wang CS, Li SM, Yang ZZ (1998) J Mol Struct (Theochem) 430:191–199CrossRefGoogle Scholar
  44. 44.
    Berendse HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684–3690CrossRefGoogle Scholar
  45. 45.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) GAUSSIAN-03. Gaussian, Inc., Wallingford, CTGoogle Scholar
  46. 46.
    Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822–2827CrossRefGoogle Scholar
  47. 47.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  48. 48.
    Hocking WH (1976) Z Naturforsch 31a:1113–1121Google Scholar
  49. 49.
    Bjarnov E, Hocking WH (1978) Z Naturforsch 33a:610–618Google Scholar
  50. 50.
    Kwei GH, Curl RFJ (1960) J Chem Phys 32:1592–1594CrossRefGoogle Scholar
  51. 51.
    Estrin DA, Paglieri L, Corongiu G, Clementi E (1996) J Phys Chem 100:8701–8711CrossRefGoogle Scholar
  52. 52.
    Pettersson M, Lundell J, Khriachtchev L, Rasanen M (1997) J Am Chem Soc 119:11715–11716CrossRefGoogle Scholar
  53. 53.
    Frisch MJ, Head-Gordon M, Trucks GW, Foresman JB, Schlegel HB, Raghavachari K, Robb MA, Binkley JS, Gonzales C, DeFrees DJ, Fox DJ, Whiteside RA, Seeger R, Melius CF, Baker J, Martin RL, Kahn LR, Stewart JJP, Topiol S, Pople JA (1994) GAUSSIAN94. Gaussian, Pittsburgh, PAGoogle Scholar
  54. 54.
    Erlandsson G, Selen H (1958) Ark Fys 14:61Google Scholar
  55. 55.
    Dyke TR, Muenter JS (1973) J Chem Phys 59:3125–3127CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Shu-Ling Chen
    • 1
  • Dong-Xia Zhao
    • 1
  • Li-Dong Gong
    • 1
  • Zhong-Zhi Yang
    • 1
    Email author
  1. 1.School of Chemistry and Chemical EngineeringLiaoning Normal UniversityDalianPeople’s Republic of China

Personalised recommendations