Advertisement

Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 621–626 | Cite as

On the enthalpy of formation of thiophene

  • Pablo A. DenisEmail author
Regular Article

Abstract

Thiophene is an important contaminant of petroleum-derived fuels, and it also plays an important role in molecular electronics. We have calculated the enthalpy of formation of thiophene employing the CCSD(T) methodology and the cc-pV(X + d)Z X = T,Q,5 basis sets. At the CCSD(T)/CBS limit and including corrections for scalar relativistic effects, anharmonic effects, spin–orbit and core-valence correlation effects, the estimated enthalpy of formation is 25.15 -1 +0.5  kcal/mol. Our estimation is 2.3 kcal/mol lower than the experimental value. The discrepancies between experiment and theory are expected to be increased if higher-order correlation effects are taken into account. Thus, a new determination of the experimental value is highly recommended. Finally, we discuss the problems faced to make this estimation, in particular the determination of accurate Zero-point energy corrections and the evaluation of core-valence correlation effects.

Keywords

Correlation consistent basis sets Sulfur compounds Thiophene 

Notes

Acknowledgments

The author acknowledges CSIC, ANII and PEDECIBA, (UNESCO PNUD) for financial support.

References

  1. 1.
    Tyndall GS, Ravishankara AR (1991) Int J Chem Kin 23:483Google Scholar
  2. 2.
    Parthiban S, Lee TJ (2000) J Chem Phys 113:145Google Scholar
  3. 3.
    Lee TJ, Mejia CN, Beran GJO, Head-Gordon M (2005) J Phys Chem A 109:8133CrossRefGoogle Scholar
  4. 4.
    Gary JH, Handwerk GE (eds) (1984) Petroleum refining technology and economics 2nd edn. Marcel Dekker, Inc. ISBN 0-8247-7150-8Google Scholar
  5. 5.
    Sulfur production report, United States Geological Survey, http://minerals.usgs.gov/minerals/pubs/commodity/sulfur/sulfumcs06.pdf
  6. 6.
    Furimsky E (2003) Appl Cat A 240:1CrossRefGoogle Scholar
  7. 7.
    Mishra A, Ma CQ, Bauerle P (2009) Chem Rev 109:1141Google Scholar
  8. 8.
    Nogueira AF, Lomba BS, Soto-Ovideo MA, Duarte Correia CR, Corio P, Furtado CA, Hummelgen IA (2007) J Phys Chem C 111:18431CrossRefGoogle Scholar
  9. 9.
    Riberio da Silva MAV, Filipa A, Santos ALOM, Gomes JRB, Roux MV, Temprado M, Jiménez P, Notario R (2009) J Phys Chem A 113:11042CrossRefGoogle Scholar
  10. 10.
    Riberio da Silva MAV, Filipa A, Santos ALOM (2010) J Chem Thermodyn 42:128CrossRefGoogle Scholar
  11. 11.
    Riberio da Silva MAV, Filipa A, Santos ALOM (2009) J Chem Thermodyn 41:926CrossRefGoogle Scholar
  12. 12.
    Riberio da Silva MAV, Filipa A, Santos ALOM (2009) J Thermal Anal Calorim 95:333CrossRefGoogle Scholar
  13. 13.
    Riberio da Silva MAV, Filipa A, Santos ALOM (2008) J Chem Thermodyn 40:1217CrossRefGoogle Scholar
  14. 14.
    Roux MV, Temprado M, Notário R, Chickos JS, Santos AFLOM, Ribeiro da Silva MAV (2007) J Phys Chem A 111:5280Google Scholar
  15. 15.
    Roux MVM, Temprado M, Jiménez P, Notário R, Chickos JS, Santos AFLOM, Ribeiro da Silva MAV (2007) J Phys Chem A 111:11084Google Scholar
  16. 16.
    Riberio da Silva MAV, Santos ALOM (2008) J Chem Thermodyn 40:1309Google Scholar
  17. 17.
    Riberio da Silva MAV, Santos ALOM (2008) J Chem Thermodyn 40:166Google Scholar
  18. 18.
    Riberio da Silva MAV, Santos ALOM (2008) J Chem Thermodyn 40:917Google Scholar
  19. 19.
    Liescheski PB, Rankin DWH (1988) J Mol Struct 178:227 (IR)Google Scholar
  20. 20.
    Kochikov IV, Tarasov YV, Spiridonov VP, Kuramshina GM, Rankin DWH, Saakjan AS, Yagola AG (2001) J Mol Struct 567:29Google Scholar
  21. 21.
    Scott DW (1961) J Mol Spectrosc 7:58Google Scholar
  22. 22.
    Jokisaari J, Hiltunen Y (1983) Mol Phys 50:1013Google Scholar
  23. 23.
    Jokisaari J, Hiltunen Y, Vaananen T (1984) Mol Phys 51:779Google Scholar
  24. 24.
    Klots TD, Chirico RD, Steele WV (1994) Spectrochim Acta A 50:765CrossRefGoogle Scholar
  25. 25.
    Kwiatkowski JS, Leszczynski JR, Teca I (1997) J Mol Struct 436–437:451Google Scholar
  26. 26.
    Hubbard WN, Scott DW, Frow FR, Waddington G (1955) J Am Chem Soc 77:5855Google Scholar
  27. 27.
    Dorofeeva OV, Gurvich LV (1995) J Phys Chem Ref Data 24:1351Google Scholar
  28. 28.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764Google Scholar
  29. 29.
    Benson SW (1978) Chem Rev 78:23Google Scholar
  30. 30.
    Denis PA (2005) Chem Phys Lett 402:289Google Scholar
  31. 31.
    Denis PA (2004) J Phys Chem A 108:11092CrossRefGoogle Scholar
  32. 32.
    Denis PA (2003) Chem Phys Lett 382:65Google Scholar
  33. 33.
    Denis PA (2005) J Chem Theory Comp 1:900Google Scholar
  34. 34.
    Denis PA, Faccio R (2008) Chem Phys Lett 460:486Google Scholar
  35. 35.
    Denis PA (2006) Chem Phys Lett 422:434Google Scholar
  36. 36.
    Denis PA (2008) J Sulf Chem 29:327Google Scholar
  37. 37.
    Denis PA (2008) Mol Phys 106:2557Google Scholar
  38. 38.
    Denis PA (2009) Spectrochim Acta Part A 72:720Google Scholar
  39. 39.
    Vervisch L, Labegorre B, Reveillon J (2004) Fuel 83:605CrossRefGoogle Scholar
  40. 40.
    Resende SM, Ornellas FR (2003) Chem Phys Lett 267:489Google Scholar
  41. 41.
    Ornellas FR (2007) J Chem Phys 126:204314Google Scholar
  42. 42.
    Ornellas FR (2007) Chem Phys Lett 448:24Google Scholar
  43. 43.
    Ornellas FR (2008) Chem Phys Lett 344:95Google Scholar
  44. 44.
    Xantheas SS, Dunning TH (1993) J Phys Chem 97:6616Google Scholar
  45. 45.
    Esseffar M, Mo O, Yañez M (1994) J Chem Phys 101:128Google Scholar
  46. 46.
    Prascher BP, Wilson AK (2007) J Mol Struct Theochem 814:1CrossRefGoogle Scholar
  47. 47.
    Wilson C, Hirst DM (1994) J Chem Soc Faraday Trans 90:3051Google Scholar
  48. 48.
    Peterson KA, Lyons JR, Francisco JS (2007) J Chem Phys 125:084314Google Scholar
  49. 49.
    Yang X, Boggs JE (2005) Chem Phys Lett 410:269Google Scholar
  50. 50.
    Ashworth SH, Fink EH (2007) Mol Phys 105:715Google Scholar
  51. 51.
    Peebles LR, Marshall P (2002) J Chem Phys 117:3132Google Scholar
  52. 52.
    Peebles LR, Marshall P (2002) Chem Phys Lett 366:520Google Scholar
  53. 53.
    Czaszar AG, Leninger M, Burcat A (2003) J Phys Chem A 107:2061Google Scholar
  54. 54.
    Baum O, Esser S, Gierse N, Brunken S, Lewel F, Hahn J, Gauss J, Schelmmer S, Giesen TF (2006) J Mol Struct Theochem 795:256Google Scholar
  55. 55.
    Baum O, Giesen Tf, Schelmmer S (2008) J Mol Spectrosc 247:25Google Scholar
  56. 56.
    Cubbage JW, Jenks WS (2001) J Phys Chem A 105:10588CrossRefGoogle Scholar
  57. 57.
    Goumri A, Rocha JDR, Laakso D, Smith CE, Marshall P (1994) J Chem Phys 101:9405Google Scholar
  58. 58.
    Edhay B, Lahmar S, Lakhdar ZB, Hochlaf M (2007) Mol Phys 105:1115Google Scholar
  59. 59.
    Prascher BP, Wilson AK (2007) Mol Phys 105:2899Google Scholar
  60. 60.
    Yockel S, Wilson AK (2008) Theor Chem Acc 120:119Google Scholar
  61. 61.
    Dunning TH, Wilson AK (2005) J Chem Phys 119:11712Google Scholar
  62. 62.
    Wilson AK, Dunning TH (2004) J Phys Chem A 108:3129CrossRefGoogle Scholar
  63. 63.
    Martinez-Nuñez E, Varandas AJC (2001) J Phys Chem A 105:5923Google Scholar
  64. 64.
    Gomes JRB, da Silva MAV (2004) J Phys Chem A 108:11684CrossRefGoogle Scholar
  65. 65.
    Gomes JRB, Gomes P (2005) Tetrahedron 61:2705CrossRefGoogle Scholar
  66. 66.
    Montoya A, Sendt K, Haynes BS (2005) J Phys Chem A 109:1057CrossRefGoogle Scholar
  67. 67.
    Li B-T, Wei Z-Z, Zhang H-X, Sun C-C (2006) J Phys Chem A 110:10643CrossRefGoogle Scholar
  68. 68.
    Zhu L, Bozzelli JW (2005) J Mol Struct Theochem 728:147Google Scholar
  69. 69.
    Koerber M, Baum O, Hahn U, Gauss J, Giesen TF, Schelmmer S (2009) J Mol Spectrosc 257:34Google Scholar
  70. 70.
    Yurchenko S, Yachmenev A, Thiel W, Baum O, Giesen TF, Melnikov VV, Jensen P (2009) J Mol Spectrosc 257:57Google Scholar
  71. 71.
    Feller D, Peterson KA, Dixon DA (2009) J Chem Phys 129:204105Google Scholar
  72. 72.
    Frederix PWJM YCH, Groenenboom GC, Parker DH, Alnama K, Western CM, Orr-Erwing AJ (2009) J Phys Chem A 113:14995CrossRefGoogle Scholar
  73. 73.
    Parthiban S, Martin JML (2001) J Chem Phys 115:2051Google Scholar
  74. 74.
    Feller D, Dixon D (2000) J Phys Chem A 104:3048CrossRefGoogle Scholar
  75. 75.
    Pollack L, Windus TL, de Jong WA, Dixon DA (2005) J Phys Chem A 109:6934CrossRefGoogle Scholar
  76. 76.
    Raghavarchari K, Trucks GW, Pople JA, Head Gordon M (1989) Chem Phys Lett 157:479Google Scholar
  77. 77.
    Stanton JF (1997) Chem Phys Lett 281:130Google Scholar
  78. 78.
    Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Chem Phys Lett 165:513CrossRefGoogle Scholar
  79. 79.
    Lee TJ, Rendell AP (1991) J Chem Phys 94:6229Google Scholar
  80. 80.
    Dunning TH, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244Google Scholar
  81. 81.
    Peterson KA, Dunning TH (2002) J Chem Phys 117:10548Google Scholar
  82. 82.
    Halkier A, Helgaker T, Jorgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:242Google Scholar
  83. 83.
    Peterson KA, Woon DE, Dunning, TH (1994) J Chem Phys 100:7410Google Scholar
  84. 84.
    CFOUR, a quantum chemical program package written by J.F. Stanton, J. Gauss, M.E.Harding, P.G. Szalay with contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W.J. Lauderdale, D.A. Matthews, T. Metzroth, D.P. O’Neill, D.R. Price, E. Prochnow, K. Ruud, F. Schiffmann, S. Stopkowicz, J. Vázquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de
  85. 85.
    Moore CE (1971) Atomic energy levels, U.S. National Bureau of Standards Circular, vol 37. NBS, Washington, DCGoogle Scholar
  86. 86.
    Becke AD (1993) J Chem Phys 98:5648Google Scholar
  87. 87.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785Google Scholar
  88. 88.
    Ditchfeld R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724Google Scholar
  89. 89.
    Grev SL, Jansen CL, Schaefer FH (1991) J Chem Phys 95:5128Google Scholar
  90. 90.
    Gaussian 03, Frisch MJ et al (2003) Gaussian Inc., PittsburghGoogle Scholar
  91. 91.
    Bomble YJ, Vazquez J, Kallay M, Michauk C, Szalay PG, Csaszar, Gauss J, Stanton JF (2006) J Chem Phys 125:064108Google Scholar
  92. 92.
    Harding M, Vazquez J, Ruscic B, Wilson AK, Gauss J, Stanton JF (2006) J Chem Phys 128:114111Google Scholar
  93. 93.
    Varner ME, Harding M, Vazquez J, Gauss J, Stanton JF (2009) J Phys Chem A 113:11238CrossRefGoogle Scholar
  94. 94.
    Ruden TA, Helgaker T, Jorgensen P, Olsen J (2003) Chem Phys Lett 371:62Google Scholar
  95. 95.
    Karton A, Tarnopolsky A, Lamere JF, Schatz GC, Martin JML (2008) J Phys Chem A 112:3Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Computational Nanotechnology, DETEMA Facultad de Química, Gral, UDELAR11800MontevideoUruguay

Personalised recommendations