Abstract
The simulated structure of 9,10-bis(methylthio)anthracene (1) has been compared with experimental parameters, then by applying the same methodology crystal structures of designed derivatives 9,10-bis(trifluoromethylthio)anthracene (2), 9,10-bis(methylselleno)anthracene (3) and 9,10-bis(trifluoromethylselleno)anthracene (4) have been simulated. By employing a diabatic model and a first-principle direct method, we have investigated carrier transport properties. The reorganization energies have been computed at the DFT (B3LYP/6-31G*) level. The transfer integrals have been calculated for a wide variety of nearest-neighbor charge transfer pathways. The reorganization energies and transfer integrals showed that 1, 3, and 4 would be good both for hole and electron transport and 2 hole transfer material. The 2 and 4 derivatives would enhance the photostability as well.
Graphical abstract

This is a preview of subscription content, access via your institution.





References
Horowitz G, Hajlaoui ME (2000) Adv Mater 12:1046
Huitema HEA, Gelinck GH, van der Putten JBPH, Kuijk KE, Hart CM, Cantatore E, de Leeuw DM (2002) Adv Mater 14:1201
Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Nature 376:498
Brabec CJ, Sariciftci NS, Hummelen JC (2001) Adv Funct Mater 11:15
Tsumura A, Koezuka H, Ando T (1986) Appl Phys Lett 49:1210
Kuszman A, Kapovits L (1985) In: Csizmadia IG, Mangini A (eds) Organic sulfur chemistry: theoretical and experimental advances. Elsevier, Amsterdam, p 191
Sudha N, Singh HB (1994) Coord Chem Rev 135–136:469
Takimiya K, Kunugi Y, Konda Y, Niihara N, Otsubo T (2004) J Am Chem Soc 126:5084
Janzen DE, Burand MW, Ewbank PC, Pappenfus TM, Higuchi H, da Silva Filho DA, Young VG, Bredas JL, Mann KR (2004) J Am Chem Soc 126:15295
Bushey ML, Nguyen TQ, Zhang W, Horoszewski D, Nuckolls C (2004) Angew Chem Int Ed 43:5446
Wurthner F (2001) Angew Chem Int Ed 40:1037
Fritz SE, Martin SM, Frisbie CD, Ward MD, Toney MF (2004) J Am Chem Soc 126:4084
Kobayashi K, Masu H, Shuto A, Yamaguchi K (2005) Chem Mater 17:6666
Bredas JL, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4971
Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Bredas JL (2007) Chem Rev 107:926
Cornil J, Lemaur V, Calbert JP, Bredas JL (2002) Adv Mater 14:726
Andrienko D, Kirkpatrick J, Marcon V, Nelson J, Kremer K (2008) Phys Stat Sol b 245:830
He YH, Hui RJ, Yi YP, Shuai ZG (2008) Chin J Chem 26:1005
Myerson AS (1999) Molecular modeling applications in crystallization. Cambridge University Press, New York
van Langevelde A, Capkova P, Sonneveld E, Schenk H, Trchova M, Ilavsky M (1999) J Synchrotron Radiat 6:1035
Liu YH, Xie Y, Lu ZY (2009) Chem Phys. doi:10.1016/j.chemphys.2009.11.015 (in press)
Yang GY, Hanack M, Lee YW, Chen Y, Lee MKY, Dini D (2003) Chem Eur J 9:2758
Becke AD (1993) J Chem Phys 98:5648
Lee C, Yang W, Parr RG (1988) Phys Rev B 41:785
Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623
MS Modeling, Release 3.0.1. (2004) Accelrys Inc., San Diego, CA
Liu JX, Dong M, Qin ZF, Wang JG (2004) J Mole Struct Theochem 679:95
Klemm E, Wang JG, Emig G (1998) Micropor Mesopor Mater 26:11
Fried JR, Weaver S (1998) Comp Mater Sci 11:277
Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94:8897
Ewald PP (1921) Ann Phys 64:253
Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265
Gruhn NE, da Silva Filho DA, Bill TG, Malagoli M, Coropceanu V, Kahn A, Brédas JL (2002) J Am Chem Soc 124:7918
Reimers JR (2001) J Chem Phys 115:9103
Irfan A, Cui RH, Zhang JP (2009) Theor Chem Acc 122:275
Coropceanu V, Nakano T, Gruhn NE, Kwon O, Yade T, Katsukawa K, Brédas JL (2006) J Phys Chem B 110:9482
Soos ZG, Tsiper EV, Painelli A (2004) J Lumin 110:332
Tsiper EV, Soos ZG (2003) Phys Rev B 68:085301
Tsiper EV, Soos ZG, Gao W, Kahn A (2002) Chem Phys Lett 360:47
Lin BC, Cheng CP, You ZQ, Hsu CP (2005) J Am Chem Soc 127:66
Troisi A, Orlandi G (2001) Chem Phys Lett 344:509
Yin SW, Yi YP, Li QX, Yu G, Liu YQ, Shuai ZG (2006) J Phys Chem A 110:7138
Valeev EF, Coropceanu V, da Silva Filho DA, Salman S, Bredas JL (2006) J Am Chem Soc 128:9882
Yang XD, Li QK, Shuai ZG (2007) Nanotechnology 18:424029
Song YB, Di CA, Yang XD, Li SP, Xu W, Liu YQ, Yang LM, Shuai ZG, Zhang DQ, Zhu DB (2006) J Am Chem Soc 128:15940
Wang CL, Wang FH, Yang XD, Li QK, Shuai ZG (2008) Org Electron 9:635
Kwiatkowski JJ, Nelson J, Li H, Bredas JL, Wenzel W, Lennartzd C (2008) Phys Chem Chem Phys 10:852
Huang JS, Kertesz M (2004) Chem Phys Lett 390:110
Wang LJ, Nan GJ, YangD X, Peng Q, Li QK, Shuai ZG (2010) Chem Soc Rev 39:423
Yang XD, Wang LJ, Wang CL, Long W, Shuai ZG (2008) Chem Mater 20:3205
Nan GJ, Wang LJ, Yang XD, Shuai ZG, Zhao Y (2009) J Chem Phys 130:024704
Deng WQ, Goddard WA III (2004) J Phys Chem B 108:8614
Frisch MJ et al (2003) Gaussian 03, Revision A. 1. Gaussian, Pittsburgh
Acknowledgments
Financial supports from the NSFC (No.50873020; 20773022), NCET-06-0321, and NENU-STB07007 are gratefully acknowledged. A. Irfan acknowledges the financial support from China Scholarship Council and Ministry of Education (MOE), Pakistan.
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
214_2010_752_MOESM1_ESM.pdf
Supplementary material 1 (PDF 1777 kb). Structural parameters of 9,10-bis(methylthio)anthracene (1), geometries, predicted crystal structures of 1, 2, 3,and 4
Rights and permissions
About this article
Cite this article
Irfan, A., Zhang, J. & Chang, Y. Theoretical investigations of the charge transfer properties of anthracene derivatives. Theor Chem Acc 127, 587–594 (2010). https://doi.org/10.1007/s00214-010-0752-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00214-010-0752-4
Keywords
- OFET
- Reorganization energy
- Transfer integrals
- DFT
- Anthracene derivatives