Advertisement

Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 587–594 | Cite as

Theoretical investigations of the charge transfer properties of anthracene derivatives

  • Ahmad Irfan
  • Jingping ZhangEmail author
  • Yingfei Chang
Regular Article

Abstract

The simulated structure of 9,10-bis(methylthio)anthracene (1) has been compared with experimental parameters, then by applying the same methodology crystal structures of designed derivatives 9,10-bis(trifluoromethylthio)anthracene (2), 9,10-bis(methylselleno)anthracene (3) and 9,10-bis(trifluoromethylselleno)anthracene (4) have been simulated. By employing a diabatic model and a first-principle direct method, we have investigated carrier transport properties. The reorganization energies have been computed at the DFT (B3LYP/6-31G*) level. The transfer integrals have been calculated for a wide variety of nearest-neighbor charge transfer pathways. The reorganization energies and transfer integrals showed that 1, 3, and 4 would be good both for hole and electron transport and 2 hole transfer material. The 2 and 4 derivatives would enhance the photostability as well.

Graphical abstract

Keywords

OFET Reorganization energy Transfer integrals DFT Anthracene derivatives 

Notes

Acknowledgments

Financial supports from the NSFC (No.50873020; 20773022), NCET-06-0321, and NENU-STB07007 are gratefully acknowledged. A. Irfan acknowledges the financial support from China Scholarship Council and Ministry of Education (MOE), Pakistan.

Supplementary material

214_2010_752_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1777 kb). Structural parameters of 9,10-bis(methylthio)anthracene (1), geometries, predicted crystal structures of 1, 2, 3,and 4

References

  1. 1.
    Horowitz G, Hajlaoui ME (2000) Adv Mater 12:1046CrossRefGoogle Scholar
  2. 2.
    Huitema HEA, Gelinck GH, van der Putten JBPH, Kuijk KE, Hart CM, Cantatore E, de Leeuw DM (2002) Adv Mater 14:1201CrossRefGoogle Scholar
  3. 3.
    Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Nature 376:498CrossRefGoogle Scholar
  4. 4.
    Brabec CJ, Sariciftci NS, Hummelen JC (2001) Adv Funct Mater 11:15CrossRefGoogle Scholar
  5. 5.
    Tsumura A, Koezuka H, Ando T (1986) Appl Phys Lett 49:1210CrossRefGoogle Scholar
  6. 6.
    Kuszman A, Kapovits L (1985) In: Csizmadia IG, Mangini A (eds) Organic sulfur chemistry: theoretical and experimental advances. Elsevier, Amsterdam, p 191Google Scholar
  7. 7.
    Sudha N, Singh HB (1994) Coord Chem Rev 135–136:469CrossRefGoogle Scholar
  8. 8.
    Takimiya K, Kunugi Y, Konda Y, Niihara N, Otsubo T (2004) J Am Chem Soc 126:5084CrossRefGoogle Scholar
  9. 9.
    Janzen DE, Burand MW, Ewbank PC, Pappenfus TM, Higuchi H, da Silva Filho DA, Young VG, Bredas JL, Mann KR (2004) J Am Chem Soc 126:15295CrossRefGoogle Scholar
  10. 10.
    Bushey ML, Nguyen TQ, Zhang W, Horoszewski D, Nuckolls C (2004) Angew Chem Int Ed 43:5446CrossRefGoogle Scholar
  11. 11.
    Wurthner F (2001) Angew Chem Int Ed 40:1037CrossRefGoogle Scholar
  12. 12.
    Fritz SE, Martin SM, Frisbie CD, Ward MD, Toney MF (2004) J Am Chem Soc 126:4084CrossRefGoogle Scholar
  13. 13.
    Kobayashi K, Masu H, Shuto A, Yamaguchi K (2005) Chem Mater 17:6666CrossRefGoogle Scholar
  14. 14.
    Bredas JL, Beljonne D, Coropceanu V, Cornil J (2004) Chem Rev 104:4971CrossRefGoogle Scholar
  15. 15.
    Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Bredas JL (2007) Chem Rev 107:926CrossRefGoogle Scholar
  16. 16.
    Cornil J, Lemaur V, Calbert JP, Bredas JL (2002) Adv Mater 14:726CrossRefGoogle Scholar
  17. 17.
    Andrienko D, Kirkpatrick J, Marcon V, Nelson J, Kremer K (2008) Phys Stat Sol b 245:830CrossRefGoogle Scholar
  18. 18.
    He YH, Hui RJ, Yi YP, Shuai ZG (2008) Chin J Chem 26:1005CrossRefGoogle Scholar
  19. 19.
    Myerson AS (1999) Molecular modeling applications in crystallization. Cambridge University Press, New YorkCrossRefGoogle Scholar
  20. 20.
    van Langevelde A, Capkova P, Sonneveld E, Schenk H, Trchova M, Ilavsky M (1999) J Synchrotron Radiat 6:1035CrossRefGoogle Scholar
  21. 21.
    Liu YH, Xie Y, Lu ZY (2009) Chem Phys. doi: 10.1016/j.chemphys.2009.11.015 (in press)
  22. 22.
    Yang GY, Hanack M, Lee YW, Chen Y, Lee MKY, Dini D (2003) Chem Eur J 9:2758CrossRefGoogle Scholar
  23. 23.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  24. 24.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 41:785CrossRefGoogle Scholar
  25. 25.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  26. 26.
    MS Modeling, Release 3.0.1. (2004) Accelrys Inc., San Diego, CAGoogle Scholar
  27. 27.
    Liu JX, Dong M, Qin ZF, Wang JG (2004) J Mole Struct Theochem 679:95CrossRefGoogle Scholar
  28. 28.
    Klemm E, Wang JG, Emig G (1998) Micropor Mesopor Mater 26:11CrossRefGoogle Scholar
  29. 29.
    Fried JR, Weaver S (1998) Comp Mater Sci 11:277CrossRefGoogle Scholar
  30. 30.
    Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94:8897CrossRefGoogle Scholar
  31. 31.
    Ewald PP (1921) Ann Phys 64:253CrossRefGoogle Scholar
  32. 32.
    Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265Google Scholar
  33. 33.
    Gruhn NE, da Silva Filho DA, Bill TG, Malagoli M, Coropceanu V, Kahn A, Brédas JL (2002) J Am Chem Soc 124:7918CrossRefGoogle Scholar
  34. 34.
    Reimers JR (2001) J Chem Phys 115:9103CrossRefGoogle Scholar
  35. 35.
    Irfan A, Cui RH, Zhang JP (2009) Theor Chem Acc 122:275CrossRefGoogle Scholar
  36. 36.
    Coropceanu V, Nakano T, Gruhn NE, Kwon O, Yade T, Katsukawa K, Brédas JL (2006) J Phys Chem B 110:9482CrossRefGoogle Scholar
  37. 37.
    Soos ZG, Tsiper EV, Painelli A (2004) J Lumin 110:332CrossRefGoogle Scholar
  38. 38.
    Tsiper EV, Soos ZG (2003) Phys Rev B 68:085301CrossRefGoogle Scholar
  39. 39.
    Tsiper EV, Soos ZG, Gao W, Kahn A (2002) Chem Phys Lett 360:47CrossRefGoogle Scholar
  40. 40.
    Lin BC, Cheng CP, You ZQ, Hsu CP (2005) J Am Chem Soc 127:66CrossRefGoogle Scholar
  41. 41.
    Troisi A, Orlandi G (2001) Chem Phys Lett 344:509CrossRefGoogle Scholar
  42. 42.
    Yin SW, Yi YP, Li QX, Yu G, Liu YQ, Shuai ZG (2006) J Phys Chem A 110:7138CrossRefGoogle Scholar
  43. 43.
    Valeev EF, Coropceanu V, da Silva Filho DA, Salman S, Bredas JL (2006) J Am Chem Soc 128:9882CrossRefGoogle Scholar
  44. 44.
    Yang XD, Li QK, Shuai ZG (2007) Nanotechnology 18:424029CrossRefGoogle Scholar
  45. 45.
    Song YB, Di CA, Yang XD, Li SP, Xu W, Liu YQ, Yang LM, Shuai ZG, Zhang DQ, Zhu DB (2006) J Am Chem Soc 128:15940CrossRefGoogle Scholar
  46. 46.
    Wang CL, Wang FH, Yang XD, Li QK, Shuai ZG (2008) Org Electron 9:635CrossRefGoogle Scholar
  47. 47.
    Kwiatkowski JJ, Nelson J, Li H, Bredas JL, Wenzel W, Lennartzd C (2008) Phys Chem Chem Phys 10:852CrossRefGoogle Scholar
  48. 48.
    Huang JS, Kertesz M (2004) Chem Phys Lett 390:110CrossRefGoogle Scholar
  49. 49.
    Wang LJ, Nan GJ, YangD X, Peng Q, Li QK, Shuai ZG (2010) Chem Soc Rev 39:423CrossRefGoogle Scholar
  50. 50.
    Yang XD, Wang LJ, Wang CL, Long W, Shuai ZG (2008) Chem Mater 20:3205CrossRefGoogle Scholar
  51. 51.
    Nan GJ, Wang LJ, Yang XD, Shuai ZG, Zhao Y (2009) J Chem Phys 130:024704CrossRefGoogle Scholar
  52. 52.
    Deng WQ, Goddard WA III (2004) J Phys Chem B 108:8614CrossRefGoogle Scholar
  53. 53.
    Frisch MJ et al (2003) Gaussian 03, Revision A. 1. Gaussian, PittsburghGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Faculty of ChemistryNortheast Normal UniversityChangchunChina

Personalised recommendations