Advertisement

Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 561–571 | Cite as

Theoretical study of proton-catalyzed hydrolytic deamination mechanism of adenine

  • Huanjie Wang
  • Fancui MengEmail author
Regular Article

Abstract

Water-assisted proton-catalyzed hydrolytic deamination of adenine to produce hypoxanthine has been studied using density functional theory method. Because adenine could be protonated at N1, N3, N7 and N10, four pathways initiated from the four different protonated adenines have been investigated. The first step of the four pathways is the nucleophilic attack of water with an assistant water to form a tetrahedral structure complex, and this is the rate-determining step. Including solvent effects decreased the relative energies of stationary points but have little effect on the structures. Pathway A is preferred due to the lowest energy barrier, and the relative free energy is 28.9 kcal/mol in vacuo. The outcomes show that adenine deamination under acidic condition is much easier to occur than under neutral condition due to lower energy barriers. The total atomic charge of C5 in the initial intermediate is correlated with the ease of deamination reaction. The more positive C5 atom is, the easier the deamination reaction is.

Keywords

Adenine deamination B3LYP IEFPCM Proton catalyzed 

Notes

Acknowledgments

This work was supported by Scientific Research Reward Fund for Excellent Young and Middle-Aged Scientists of Shandong Province (Grant No. 2008BS02014).

Supplementary material

214_2010_747_MOESM1_ESM.doc (165 kb)
(DOC 165 kb)

References

  1. 1.
    Sun X, Lee JK (2007) J Org Chem 72:6548–6555CrossRefGoogle Scholar
  2. 2.
    Almatarneh MH, Flinn CG, Poirier RA, Sokalski WA (2006) J Phys Chem A 110:8227–8234CrossRefGoogle Scholar
  3. 3.
    Almatarneh MH, Flinn CG, Poirier RA (2008) J Chem Inf Model 48:831–843CrossRefGoogle Scholar
  4. 4.
    Labet V, Morell C, Grand A, Toro-Labbé A (2008) J Phys Chem A 112:11487–11494CrossRefGoogle Scholar
  5. 5.
    Labet V, Grand A, Morell C, Cadet J, Eriksson LA (2008) Theor Chem Acc 120:429–435CrossRefGoogle Scholar
  6. 6.
    Labet V, Morell C, Cadet J, Eriksson LA, Grand A (2009) J Phys Chem A 113:2524–2533CrossRefGoogle Scholar
  7. 7.
    Zhang A, Yang B, Li Z (2007) J Mol Struct Theochem 819:95–101CrossRefGoogle Scholar
  8. 8.
    Zhu C, Meng F (2009) Struct Chem 20:685–691CrossRefGoogle Scholar
  9. 9.
    Zheng H, Meng F (2009) Struct Chem 20:943–949CrossRefGoogle Scholar
  10. 10.
    Jordan DO (1960) The chemistry of nucleic acids. Butterworths, Washington, DC, p 65Google Scholar
  11. 11.
    Shapiro R, Klein RS (1966) Biochemistry 5:2358–2362CrossRefGoogle Scholar
  12. 12.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  13. 13.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  14. 14.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648CrossRefGoogle Scholar
  15. 15.
    Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654CrossRefGoogle Scholar
  16. 16.
    Toro-Labbé A (1999) J Phys Chem A 103:4398–4403CrossRefGoogle Scholar
  17. 17.
    Rincón E, Toro-Labbé A (2007) Chem Phys Lett 438:93–98CrossRefGoogle Scholar
  18. 18.
    Furmanchuk A, Leszczynski J (2008) J Sulfur Chem 29:401–413CrossRefGoogle Scholar
  19. 19.
    Cappelli C, Corni S, Mennucci B, Tomasi J, Cammi R (2005) Int J Quant Chem 104:716–726CrossRefGoogle Scholar
  20. 20.
    Adhikary A, Kumar A, Becker D, Sevilla MD (2006) J Phys Chem B 110:24171–24180CrossRefGoogle Scholar
  21. 21.
    Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041CrossRefGoogle Scholar
  22. 22.
    Rappé AK, Casewit CJ, Colwell KS, Goddard WA III, Skiff WM (1992) J Am Chem Soc 114:10024–10035CrossRefGoogle Scholar
  23. 23.
    Baboul AG, Curtiss LA, Redfern PC (1999) J Chem Phys 110:7650–7657CrossRefGoogle Scholar
  24. 24.
    Curtiss LA, Raghavachari K (1998) J Chem Phys 109:7764–7776CrossRefGoogle Scholar
  25. 25.
    Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968–5975CrossRefGoogle Scholar
  26. 26.
    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503–506CrossRefGoogle Scholar
  27. 27.
    Tang YZ, Sun JY, Sun H, Pan YR, Wang RS (2008) Theor Chem Account 119:297–303CrossRefGoogle Scholar
  28. 28.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskortz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D.01. Gaussian Inc, Wallingford, CTGoogle Scholar
  29. 29.
    Mirkin SM (1995) Annu Rev Biophys Biomol Struct 24:319–350CrossRefGoogle Scholar
  30. 30.
    Wu R, McMahon TB (2007) J Am Chem Soc 129:569–580CrossRefGoogle Scholar
  31. 31.
    Fuentes-Cabrera M, Sumpter BG, Šponer JE, Šponer J, Petit L, Wells JC (2007) J Phys Chem B 111:870–879CrossRefGoogle Scholar
  32. 32.
    Liu H, Gauld JW (2008) J Phys Chem B 112:16874–16882CrossRefGoogle Scholar
  33. 33.
    Close DM, Crespo-Hernández CE, Gorb L, Leszczynski J (2008) J Phys Chem A 112:12702–12706CrossRefGoogle Scholar
  34. 34.
    Sousa SF, Fernandes PA, Ramos MJ (2007) J Phys Chem A 111:10439–10452CrossRefGoogle Scholar
  35. 35.
    Lindahl T, Nyberg B (1974) Biochemistry 13:3405–3410CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringShandong UniversityJinanPeople’s Republic of China
  2. 2.Tianjin Institute of Pharmaceutical ResearchTianjinPeople’s Republic of China

Personalised recommendations