Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 551–560 | Cite as

Theoretical studies of the reactions of Cl atoms with CF3CH2OCH n F(3−n) (n = 1, 2, 3)

  • Hui ZhangEmail author
  • Cheng-yang Liu
  • Gui-ling Zhang
  • Wen-jie Hou
  • Miao Sun
  • Bo Liu
  • Ze-sheng LiEmail author
Regular Article


This paper presents the theoretical studies of the reactions of Cl atoms with CF3CH2OCH3, CF3CH2OCH2F and CF3CH2OCHF2 using an ab initio direct dynamics theory. The geometries and vibrational frequencies of the reactants, complexes, transition states and products are calculated at the MP2/6-31+(d,p) level. The minimum energy path is also calculated at same level. The MC-QCISD method is carried out for further refining the energetic information. The rate constants are evaluated with the canonical variational transition state theory (CVT) and CVT with small curvature tunneling contributions in the temperature range 200–1,500 K. The results are in good agreement with experimental values.


Ab initio HFEs CVT Rate constants 



The authors thank Professor Donald G. Truhlar for providing POLYRATE 9.1 program. This work is supported by the National Natural Science Foundation of China (50743013, 20973049), the Foundation for University Key Teacher by the Department of Education of Heilongjiang Province (1152G010), the SF for leading experts in academe of Harbin of China (2007RFXXG027), the SF for Postdoctoral of Heilongjiang province of China (LBH-Q07058), and Natural Science Foundation of Heilongjiang Province (B200605), The Foundation of Graduate Innovation of the Education Department of Heilongjiang province (YJSCX2009-055HLJ).

Supplementary material

214_2010_746_MOESM1_ESM.docx (1.3 mb)
Supporting Information Available: Table S1 Calculated frequencies (cm−1) for the transitions states at the MP2/6-31+G(d,p) level. Table S2 Calculated and experimental frequencies (cm−1) for the reactants, products and complexes at the MP2/6-31+G(d,p) level. Table S3 Relative energies of the stationary points in terms of enthalpy and Gibbs free energy (Hartree) calculated at the MP2/6-31+G(d,p) level. Table S4 The TST, CVT, ZCT and SCT rate constants calculated at the MC-QCISD//MP2/6-31+G(d,p) level for three reactions, R1, R2, and R3, between 200 and 1,500 K (cmmolecule−1 s−1). Fig. S1 Optimized geometries of the reactants, complexes and products at the MP2/6-31+G(d,p) level. (DOCX 1359 kb)


  1. 1.
    World Meteorological Organization (WMO) (1994) Scientific assessment of ozone depletion. Report No. 37, Geneva, WMOGoogle Scholar
  2. 2.
    Wallington TJ, Schneider WF, Sehested J, Bilde M, Platz J, Nielsen OJ, Christensen LK, Molina MJ, Molina LT, Wooldridge PWJ (1997) Phys Chem A. 101:8264CrossRefGoogle Scholar
  3. 3.
    DeMore WB, Sander SP, Golden DM, Hampson RF, Kurylo MJ, Howard CJ, Ravishankara AR, Kolb CE, Molina MJ (1997) Chemical kinetics and photochemical data for use in stratospheric. JPL Publication 97:4Google Scholar
  4. 4.
    Oyaro N, Sellevag SR, Nielsen CJJ (2005) Phys Chem A 109:337CrossRefGoogle Scholar
  5. 5.
    Kyriakos GK, Yannis GL, Panos PJ (1998) Phys Chem. A 102:8620–8625CrossRefGoogle Scholar
  6. 6.
    Beach SD, Hickson KM, Smith IWM, Tuckett RP (2001) Phys Chem Chem Phys 3:3064CrossRefGoogle Scholar
  7. 7.
    Wallington TJ, Hurley MD, Fedotov V, Morrell C, Hancock GJ (2002) Phys Chem A 106:8391CrossRefGoogle Scholar
  8. 8.
    Hickson KM, Smith IWM (2001) Int J Chem Kinet 33:165CrossRefGoogle Scholar
  9. 9.
    Yang L, Liu JY, Wang L, He HQ, Wang Y, Li ZSJ (2008) Comput Chem 29:550–561CrossRefGoogle Scholar
  10. 10.
    Truhlar DG (1995) In: Heidrich D (ed) The reaction path in chemistry: current approaches and perspectives. Kluwer, Dordrecht, p 229Google Scholar
  11. 11.
    Truhlar DG, Garrett BC, Klippenstein SJJ (1996) Phys Chem 100:12771CrossRefGoogle Scholar
  12. 12.
    Hu WP, Truhlar DGJ (1996) Am Chem Soc 118:860CrossRefGoogle Scholar
  13. 13.
    Corchado JC, Chuang YY, Fast PL, Villa J, Hu WP, Liu YP, Lynch GC, Nguyen KA, Jackels CF, Melissas VS, Lynch BJ, Rossi I, Coitino EL, Ramos AF, Pu J, Albu TV (2002) POLYRATE version 9.1. Department of Chemistry and Supercomputer Institute, University of Minnesota, MinneapolisGoogle Scholar
  14. 14.
    Truhlar DG, Isaacson AD, Garrett BC (1985) In: Baer M (ed) The theory of chemical reaction dynamics, vol 4. CRC Press, Boca Raton, p 65Google Scholar
  15. 15.
    Truhlar DG, Garrett BC (1980) Acc Chem Res 13:440CrossRefGoogle Scholar
  16. 16.
    Duncan WT, Truong TNJ (1995) Chem Phys 103:9642Google Scholar
  17. 17.
    Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275CrossRefGoogle Scholar
  18. 18.
    Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503CrossRefGoogle Scholar
  19. 19.
    Zhang H, Liu JY, Li ZS, Sheng L, Wu JY, Sun CC (2005) Chem Phys Lett 405:240–245CrossRefGoogle Scholar
  20. 20.
    Yu X, Li SM, Xu ZF, Li ZS, Sun CCJ (2001) Phys. Chem. A 105:7072–7078CrossRefGoogle Scholar
  21. 21.
    Zhang QZ, Wang SK, Gu YSJ (2002) Phys Chem. A 106:3796–3803CrossRefGoogle Scholar
  22. 22.
    Li QS, Luo Q (2003) J Phys Chem. A 107:10435–10440CrossRefGoogle Scholar
  23. 23.
    Yu YM, Feng SY, Feng DC (2005) J Phys Chem. A 109:3663–3668CrossRefGoogle Scholar
  24. 24.
    Zhang QZ, Gu YS, Wang SKJ (2003) Phys Chem. A 107:8295–8301CrossRefGoogle Scholar
  25. 25.
    Fast PL, Truhlar DGJ (2000) Phys Chem A 104:6111CrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJ, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) GAUSSIAN03 program package. Pittsburgh, GaussianGoogle Scholar
  27. 27.
    Lu DH, Truong TN, Melissas VS, Lynch GC, Liu YP, Grarrett BC, Steckler R, Issacson AD, Rai SN, Hancock GC, Lauderdale JG, Joseph T, Truhlar DG (1992) Comput Phys Commun 71:235CrossRefGoogle Scholar
  28. 28.
    Garrett BC, Truhlar DG, Grev RS, Magnuson AWJ (1980) Phys Chem 84:1730CrossRefGoogle Scholar
  29. 29.
    Liu Y-P, Lynch GC, Truong TN, Lu D-H, Truhlar DG, Garrett BCJ (1993) Am Chem Soc 115:2408CrossRefGoogle Scholar
  30. 30.
    Truhlar DGJ (1991) Comput Chem 12:266CrossRefGoogle Scholar
  31. 31.
    Chuang YY, Truhlar DGJ (2000) Chem Phys 112:1221Google Scholar
  32. 32.
    Rayez MT, Rayez JCJ (1994) Phys Chem 98:11342CrossRefGoogle Scholar
  33. 33.
    Harmony MD, Laurie VW, Ramsay RL, Lovas FJ, Lafferty WJ, Maki AGJ (1979) Phys Chem 8:619Google Scholar
  34. 34.
    Shimanouchi T (1972) Tables of molecular vibrational frequencies consolidated, vol I. National Bureau of Standards, US GPO, Washington, DC, pp 1–160Google Scholar
  35. 35.
    Shimanouchi T (1972) Tables of molecular vibrational frequencies consolidated, volume II. J Phys Chem Ref Data 6(3):993–1102Google Scholar
  36. 36.
    Chase MW, Davies CA (1985) Janaf thermochemical tables, 3rd edn. Ref Data, 14,1Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.College of Chemical and Environmental EngineeringHarbin University of Science and TechnologyHarbinPeople’s Republic of China
  2. 2.Academy of Fundamental and Interdisciplinary Sciences, Department of ChemistryHarbin Institute of TechnologyHarbinPeople’s Republic of China
  3. 3.School of Sciences, Beijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations