Skip to main content
Log in

How do phosphoramides compete with phosphine oxides in lanthanide complexation? Structural, electronic and energy aspects at ab initio and DFT levels

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Novel comparison of the structural, electronic and energy aspects of lanthanide complexes of model phosphoramides (PAs) with those of phosphine oxides (POs), phosphate esters (PEs) and phosphoryl trihalides (PHs) has been carried out by ab initio and DFT calculations. Atoms in Molecules (AIM) and Natural Bonding Orbital (NBO) analyses were performed to understand the electronic structure of ligands L and related complexes, L–Ln3+. NBO analysis indicates that the negative charge on phosphoryl oxygen (OP) and the p character of the phosphoryl lone pair, Lp(OP), increase in the order PH < PE < PO < PA. Positive charge of the lanthanide cation in PA complexes is less than those of PH, PE and PO complexes, due to the more intense ligand to metal charge transfer (LMCT). The metal–ligand distance decreases in the order PH > PE > PO > PA, which is confirmed by the results of AIM analysis. Charge density at the bond critical point of L–Ln3+ follows the sequence PH < PE < PO < PA. The results of the Energy Decomposition Analysis (EDA) indicate that the donative interaction and LMCT increases in order PH < PO < PE < PA. The effect of basis set superposition error (BSSE) on the L···Ln3+ interaction energies was also studied in detail at DFT, MP2 and CCSD(T) levels using the counterpoise (CP) method. Trends in the CP-corrected L–Ln3+ bond energies are in good accordance with the optimized OP···Ln3+ distances. The results show that the difference between CP-corrected and uncorrected interaction energies in PA complexes is larger than those in the others, because PAs are more deformable. It is depicted that PAs are comparable with POs in lanthanide complexation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Horwitz EP, Kalina DG, Diamond H, Vandegrift GF, Schulz WW (1985) Solvent Extr Ion Exch 3:75–109

    Article  CAS  Google Scholar 

  2. Nash KL (1993) Solvent Extr Ion Exch 11:729–768

    Article  CAS  Google Scholar 

  3. Bhattacharyya A, Mohapatra PK, Manchanda VK (2006) Solvent Extr Ion Exch 24:1–17

    Article  CAS  Google Scholar 

  4. Modolo G, Nabet S (2005) Solvent Extr Ion Exch 23:359–373

    Article  CAS  Google Scholar 

  5. Pierce TB, Peck PF (1963) Analyst 88:217–221

    Article  CAS  Google Scholar 

  6. Yaftian MR, Burgard M, Matt D, Dieleman CB, Rastegar F (1997) Solvent Extr Ion Exch 15(6):975–989

    Article  CAS  Google Scholar 

  7. Boehme C, Wipff G (2001) Chem Eur J 7:1398–1407

    Article  CAS  Google Scholar 

  8. Nazarenko AY, Baulin VE, Lamb JD, Volkova TA, Varnek AA, Wipff G (1999) Solvent Extr Ion Exch 17(3):495–523

    Article  CAS  Google Scholar 

  9. Atamas L, Klimchuk O, Rudzevich V, Pirozhenko V, Kalchenko V, Smirnov I, Babain V, Efremova T, Varnek A, Wipff G, Arnaud-Neu F, Roch M, Saadioui M, Bohmer V (2002) J Supramol Chem 2:421–427

    Google Scholar 

  10. Jenkins AL, Uy OM, Murray GM (1999) Anal Chem 71:373–378

    Article  CAS  Google Scholar 

  11. Alexander V (1995) Chem Rev 95:273–342

    Article  CAS  Google Scholar 

  12. Dam HH, Beijleveld H, Reinhoudt DN, Verboom W (2008) J Am Chem Soc 130:5542–5551

    Article  CAS  Google Scholar 

  13. Berny F, Muzet N, Troxler L, Dedieu A, Wipff G (1999) Inorg Chem 38:1244–1252

    Article  CAS  Google Scholar 

  14. Baaden M, Berny F, Boehme C, Muzet N, Schurhammer R, Wipff G (2000) J Alloys Compd 303–304:104–111

    Article  Google Scholar 

  15. Schurhammer R, Erhart V, Troxler L, Wipff G (1999) J Chem Soc Perkin Trans 2:2423–2431

    Google Scholar 

  16. Troxler L, Hutschka DF, Wipff G (1998) J Mol Struct: THEOCHEM 431:151–163

    Article  CAS  Google Scholar 

  17. Troxler L, Baaden M, Bohmer V, Wipff G (2000) Supramol Chem 12:27–51

    Article  CAS  Google Scholar 

  18. Boehme C, Wipff G (2002) Inorg Chem 41:727–737

    Article  CAS  Google Scholar 

  19. Chu IH, Zhang H, Dearden DV (1993) J Am Chem Soc 115:5736–5744

    Article  CAS  Google Scholar 

  20. Staley RH, Beauchamp JL (1975) J Am Chem Soc 97:5920–5921

    Article  CAS  Google Scholar 

  21. Hutschka F, Dedieu A, Troxler L, Wipff G (1998) J Phys Chem A 102:3773–3781

    Article  CAS  Google Scholar 

  22. Pearson RG (1990) Coord Chem Rev 100:403–425

    Article  CAS  Google Scholar 

  23. Hancock RD, Martell AE (1989) Chem Rev 89:1875–1914

    Article  CAS  Google Scholar 

  24. Berny F, Wipff G (2001) J Chem Soc Perkin Trans 2:73–82

    Google Scholar 

  25. Modolo G, Odoj R (1999) Solvent Extr Ion Exch 17:33–53

    Article  CAS  Google Scholar 

  26. Corbridge DEC (1995) Phosphorus: an outline of its chemistry, biochemistry and technology, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  27. Wiberg E, Wiberg N, Holleman AF (2001) Inorganic chemistry. Academic Press, London, pp 613–614

    Google Scholar 

  28. Maron L, Eisenstein O (2000) J Phys Chem A 104:7140–7143

    Article  CAS  Google Scholar 

  29. Cotton S (2006) Lanthanide and actinide chemistry. Wiley, Chichester

  30. Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173–194

    Article  CAS  Google Scholar 

  31. Dolg M, Stoll H, Savin A, Preuss H (1993) Theor Chim Acta 85:441–450

    Article  CAS  Google Scholar 

  32. Ehlers AW, Bohme M, Dapprich S, Gobbi A, Hollwarth A, Jonas V, Kohler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114

    Article  CAS  Google Scholar 

  33. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  34. Bader RFW (1990) Atoms in molecules: A quantum theory. Oxford University Press, Oxford, UK

    Google Scholar 

  35. Bader RFW (1991) Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  36. Matta CF, Boyd RJ (2007) The Quantum Theory of Atoms in Molecules. WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim

    Book  Google Scholar 

  37. Rotzinger FP (2005) J Phys Chem B 109:1510–1527

    Article  CAS  Google Scholar 

  38. Wahlin P, Danilo C, Vallet V, Real F, Flament JP, Wahlgren U (2008) J Chem Theory Comput 4:569–577

    Article  CAS  Google Scholar 

  39. Torrent M, Gili P, Duran M, Sola M (1996) J Chem Phys 104:9499–9510

    Article  CAS  Google Scholar 

  40. Dunbar RC (2002) J Phys Chem A 106:7328–7337

    Article  CAS  Google Scholar 

  41. Fan HJ, Liu CW (1999) Chem Phys Lett 300:351–358

    Article  CAS  Google Scholar 

  42. Chalasinski G, Szczesniak MM (1994) Chem Rev 94:1723–1765

    Article  CAS  Google Scholar 

  43. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A.7. Gaussian, Inc. Pittsburgh, PA

  45. Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325–340

    Article  CAS  Google Scholar 

  46. Morokuma K, Kitaura K (1981) Chemical applications of atomic and molecular electrostatic potentials. In: Politzer P, Truhlar DG (Eds). Plenum, New York

  47. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  48. Gilheany DG (1994) Chem Rev 94:1339–1374

    Article  CAS  Google Scholar 

  49. Dobado JA, Martinez-Garcia H, Molina JM, Sundberg MR (1998) J Am Chem Soc 120:8461–8471

    Article  CAS  Google Scholar 

  50. Bollinger JC, Houriet R, Kern CW, Perret D, Weber J, Yvernault T (1985) J Am Chem Soc 107:5352–5358

    Article  CAS  Google Scholar 

  51. Xantheas SS (1996) J Chem Phys 104:8821–8824

    Article  CAS  Google Scholar 

  52. Jensen HB, Ross P (1969) Chem Phys Lett 3:140–143

    Article  Google Scholar 

  53. Liu B, McLean AD (1973) J Chem Phys 59:4557–4558

    Article  CAS  Google Scholar 

  54. Kim CK, Zhang H, Yoon SH, Won J, Lee MJ, Kim CK (2009) J Phys Chem A 113:513–519

    Article  CAS  Google Scholar 

  55. Coupez B, Boehme C, Wipff G (2002) Phys Chem Chem Phys 4:5716–5729

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Support of this work by Tarbiat Modares University is gratefully acknowledged. We thank also Dr. Afshin Abbasi for his comments and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khodayar Gholivand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gholivand, K., Mahzouni, H.R. & Esrafili, M.D. How do phosphoramides compete with phosphine oxides in lanthanide complexation? Structural, electronic and energy aspects at ab initio and DFT levels. Theor Chem Acc 127, 539–550 (2010). https://doi.org/10.1007/s00214-010-0743-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0743-5

Keywords

Navigation