Advertisement

Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 539–550 | Cite as

How do phosphoramides compete with phosphine oxides in lanthanide complexation? Structural, electronic and energy aspects at ab initio and DFT levels

  • Khodayar GholivandEmail author
  • Hamid Reza Mahzouni
  • Mehdi D. Esrafili
Regular Article

Abstract

Novel comparison of the structural, electronic and energy aspects of lanthanide complexes of model phosphoramides (PAs) with those of phosphine oxides (POs), phosphate esters (PEs) and phosphoryl trihalides (PHs) has been carried out by ab initio and DFT calculations. Atoms in Molecules (AIM) and Natural Bonding Orbital (NBO) analyses were performed to understand the electronic structure of ligands L and related complexes, L–Ln3+. NBO analysis indicates that the negative charge on phosphoryl oxygen (OP) and the p character of the phosphoryl lone pair, Lp(OP), increase in the order PH < PE < PO < PA. Positive charge of the lanthanide cation in PA complexes is less than those of PH, PE and PO complexes, due to the more intense ligand to metal charge transfer (LMCT). The metal–ligand distance decreases in the order PH > PE > PO > PA, which is confirmed by the results of AIM analysis. Charge density at the bond critical point of L–Ln3+ follows the sequence PH < PE < PO < PA. The results of the Energy Decomposition Analysis (EDA) indicate that the donative interaction and LMCT increases in order PH < PO < PE < PA. The effect of basis set superposition error (BSSE) on the L···Ln3+ interaction energies was also studied in detail at DFT, MP2 and CCSD(T) levels using the counterpoise (CP) method. Trends in the CP-corrected L–Ln3+ bond energies are in good accordance with the optimized OP···Ln3+ distances. The results show that the difference between CP-corrected and uncorrected interaction energies in PA complexes is larger than those in the others, because PAs are more deformable. It is depicted that PAs are comparable with POs in lanthanide complexation.

Keywords

Lanthanide complex DFT calculation NBO AIM Phosphoramide BSSE 

Notes

Acknowledgment

Support of this work by Tarbiat Modares University is gratefully acknowledged. We thank also Dr. Afshin Abbasi for his comments and helpful discussions.

References

  1. 1.
    Horwitz EP, Kalina DG, Diamond H, Vandegrift GF, Schulz WW (1985) Solvent Extr Ion Exch 3:75–109CrossRefGoogle Scholar
  2. 2.
    Nash KL (1993) Solvent Extr Ion Exch 11:729–768CrossRefGoogle Scholar
  3. 3.
    Bhattacharyya A, Mohapatra PK, Manchanda VK (2006) Solvent Extr Ion Exch 24:1–17CrossRefGoogle Scholar
  4. 4.
    Modolo G, Nabet S (2005) Solvent Extr Ion Exch 23:359–373CrossRefGoogle Scholar
  5. 5.
    Pierce TB, Peck PF (1963) Analyst 88:217–221CrossRefGoogle Scholar
  6. 6.
    Yaftian MR, Burgard M, Matt D, Dieleman CB, Rastegar F (1997) Solvent Extr Ion Exch 15(6):975–989CrossRefGoogle Scholar
  7. 7.
    Boehme C, Wipff G (2001) Chem Eur J 7:1398–1407CrossRefGoogle Scholar
  8. 8.
    Nazarenko AY, Baulin VE, Lamb JD, Volkova TA, Varnek AA, Wipff G (1999) Solvent Extr Ion Exch 17(3):495–523CrossRefGoogle Scholar
  9. 9.
    Atamas L, Klimchuk O, Rudzevich V, Pirozhenko V, Kalchenko V, Smirnov I, Babain V, Efremova T, Varnek A, Wipff G, Arnaud-Neu F, Roch M, Saadioui M, Bohmer V (2002) J Supramol Chem 2:421–427Google Scholar
  10. 10.
    Jenkins AL, Uy OM, Murray GM (1999) Anal Chem 71:373–378CrossRefGoogle Scholar
  11. 11.
    Alexander V (1995) Chem Rev 95:273–342CrossRefGoogle Scholar
  12. 12.
    Dam HH, Beijleveld H, Reinhoudt DN, Verboom W (2008) J Am Chem Soc 130:5542–5551CrossRefGoogle Scholar
  13. 13.
    Berny F, Muzet N, Troxler L, Dedieu A, Wipff G (1999) Inorg Chem 38:1244–1252CrossRefGoogle Scholar
  14. 14.
    Baaden M, Berny F, Boehme C, Muzet N, Schurhammer R, Wipff G (2000) J Alloys Compd 303–304:104–111CrossRefGoogle Scholar
  15. 15.
    Schurhammer R, Erhart V, Troxler L, Wipff G (1999) J Chem Soc Perkin Trans 2:2423–2431Google Scholar
  16. 16.
    Troxler L, Hutschka DF, Wipff G (1998) J Mol Struct: THEOCHEM 431:151–163CrossRefGoogle Scholar
  17. 17.
    Troxler L, Baaden M, Bohmer V, Wipff G (2000) Supramol Chem 12:27–51CrossRefGoogle Scholar
  18. 18.
    Boehme C, Wipff G (2002) Inorg Chem 41:727–737CrossRefGoogle Scholar
  19. 19.
    Chu IH, Zhang H, Dearden DV (1993) J Am Chem Soc 115:5736–5744CrossRefGoogle Scholar
  20. 20.
    Staley RH, Beauchamp JL (1975) J Am Chem Soc 97:5920–5921CrossRefGoogle Scholar
  21. 21.
    Hutschka F, Dedieu A, Troxler L, Wipff G (1998) J Phys Chem A 102:3773–3781CrossRefGoogle Scholar
  22. 22.
    Pearson RG (1990) Coord Chem Rev 100:403–425CrossRefGoogle Scholar
  23. 23.
    Hancock RD, Martell AE (1989) Chem Rev 89:1875–1914CrossRefGoogle Scholar
  24. 24.
    Berny F, Wipff G (2001) J Chem Soc Perkin Trans 2:73–82Google Scholar
  25. 25.
    Modolo G, Odoj R (1999) Solvent Extr Ion Exch 17:33–53CrossRefGoogle Scholar
  26. 26.
    Corbridge DEC (1995) Phosphorus: an outline of its chemistry, biochemistry and technology, 5th edn. Elsevier, AmsterdamGoogle Scholar
  27. 27.
    Wiberg E, Wiberg N, Holleman AF (2001) Inorganic chemistry. Academic Press, London, pp 613–614Google Scholar
  28. 28.
    Maron L, Eisenstein O (2000) J Phys Chem A 104:7140–7143CrossRefGoogle Scholar
  29. 29.
    Cotton S (2006) Lanthanide and actinide chemistry. Wiley, ChichesterGoogle Scholar
  30. 30.
    Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173–194CrossRefGoogle Scholar
  31. 31.
    Dolg M, Stoll H, Savin A, Preuss H (1993) Theor Chim Acta 85:441–450CrossRefGoogle Scholar
  32. 32.
    Ehlers AW, Bohme M, Dapprich S, Gobbi A, Hollwarth A, Jonas V, Kohler KF, Stegmann R, Veldkamp A, Frenking G (1993) Chem Phys Lett 208:111–114CrossRefGoogle Scholar
  33. 33.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  34. 34.
    Bader RFW (1990) Atoms in molecules: A quantum theory. Oxford University Press, Oxford, UKGoogle Scholar
  35. 35.
    Bader RFW (1991) Chem Rev 91:893–928CrossRefGoogle Scholar
  36. 36.
    Matta CF, Boyd RJ (2007) The Quantum Theory of Atoms in Molecules. WILEY-VCH Verlag GmbH & Co, KGaA, WeinheimCrossRefGoogle Scholar
  37. 37.
    Rotzinger FP (2005) J Phys Chem B 109:1510–1527CrossRefGoogle Scholar
  38. 38.
    Wahlin P, Danilo C, Vallet V, Real F, Flament JP, Wahlgren U (2008) J Chem Theory Comput 4:569–577CrossRefGoogle Scholar
  39. 39.
    Torrent M, Gili P, Duran M, Sola M (1996) J Chem Phys 104:9499–9510CrossRefGoogle Scholar
  40. 40.
    Dunbar RC (2002) J Phys Chem A 106:7328–7337CrossRefGoogle Scholar
  41. 41.
    Fan HJ, Liu CW (1999) Chem Phys Lett 300:351–358CrossRefGoogle Scholar
  42. 42.
    Chalasinski G, Szczesniak MM (1994) Chem Rev 94:1723–1765CrossRefGoogle Scholar
  43. 43.
    Boys SF, Bernardi F (1970) Mol Phys 19:553–566CrossRefGoogle Scholar
  44. 44.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A.7. Gaussian, Inc. Pittsburgh, PAGoogle Scholar
  45. 45.
    Kitaura K, Morokuma K (1976) Int J Quantum Chem 10:325–340CrossRefGoogle Scholar
  46. 46.
    Morokuma K, Kitaura K (1981) Chemical applications of atomic and molecular electrostatic potentials. In: Politzer P, Truhlar DG (Eds). Plenum, New YorkGoogle Scholar
  47. 47.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  48. 48.
    Gilheany DG (1994) Chem Rev 94:1339–1374CrossRefGoogle Scholar
  49. 49.
    Dobado JA, Martinez-Garcia H, Molina JM, Sundberg MR (1998) J Am Chem Soc 120:8461–8471CrossRefGoogle Scholar
  50. 50.
    Bollinger JC, Houriet R, Kern CW, Perret D, Weber J, Yvernault T (1985) J Am Chem Soc 107:5352–5358CrossRefGoogle Scholar
  51. 51.
    Xantheas SS (1996) J Chem Phys 104:8821–8824CrossRefGoogle Scholar
  52. 52.
    Jensen HB, Ross P (1969) Chem Phys Lett 3:140–143CrossRefGoogle Scholar
  53. 53.
    Liu B, McLean AD (1973) J Chem Phys 59:4557–4558CrossRefGoogle Scholar
  54. 54.
    Kim CK, Zhang H, Yoon SH, Won J, Lee MJ, Kim CK (2009) J Phys Chem A 113:513–519CrossRefGoogle Scholar
  55. 55.
    Coupez B, Boehme C, Wipff G (2002) Phys Chem Chem Phys 4:5716–5729CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Khodayar Gholivand
    • 1
    Email author
  • Hamid Reza Mahzouni
    • 1
  • Mehdi D. Esrafili
    • 1
  1. 1.Department of ChemistryTarbiat Modares UniversityTehranIran

Personalised recommendations