Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 519–538 | Cite as

An investigation of the lowest reaction pathway of propene + BCl3 decomposition in chemical vapor deposition process

  • Xiaoqiong Jiang
  • Kehe SuEmail author
  • Xin Wang
  • Yanli Wang
  • Yan Liu
  • Qingfeng Zeng
  • Laifei Cheng
  • Litong Zhang
Regular Article


The lowest reaction pathway or one of the favored possible paths in the CVD process of preparing boron carbides with BCl3-C3H6(propene)-H2 precursors was searched theoretically, which involves 95 transition states and 103 intermediates. The geometries of the species were optimized by employing the B3PW91/6-311G(d,p) method. The transition states as well as their linked intermediates were confirmed with frequency and the intrinsic reaction coordinates analyses. The energy barriers and the reaction energies were evaluated with the accurate model chemistry method at G3(MP2) level after a non-dynamical electronic correlation detection. The heat capacities and entropies were obtained with statistical thermodynamics, and the heat capacities were fitted into analytical equations. The Gibbs free energies at 298.15 K for all of the reaction steps were reported. The energies at any temperature could be derived classically by using the analytical heat capacities. All the possible elementary reactions, including both direct decomposition and the radical attacking dissociations, for each reaction step were examined, and the one with the lowest energy or energy barrier was further studied in the next step. It was found that there are 19 reaction steps in the lowest path to produce the final BC3 cluster including two steps of initializing the reaction chain of producing H and Cl radicals. The highest energy in the lowest reaction pathway is 215.1 kJ/mol at 298.15 K and that for 1,200 K is 275.1 kJ/mol. The results are comparable with the most recent experimental observation of the apparent activation energy 208.7 kJ/mol.


Pathways Propene and boron trichloride Decomposition 



Part of the calculations was performed in the High Performance Computation Center of the Northwestern Polytechnical University. Supports by the National Natural Science Foundation of China (No. 50572089 and 50642039) and the Chinese 973 Fundamental Researches are greatly acknowledged.

Supplementary material

214_2010_742_MOESM1_ESM.doc (2 mb)
Supplementary material 1 (DOC 1.99 mb)


  1. 1.
    Cox BN, Zok FW (1996) Solid State Mater Sci 1:666CrossRefGoogle Scholar
  2. 2.
    Halbig MC, Brewer DN, Eckel AJ (1997) NASA/TM. New York Press, New YorkGoogle Scholar
  3. 3.
    Naslain R (2004) Compos Sci Technol 64:155CrossRefGoogle Scholar
  4. 4.
    Cutard T, Huger M, Fargeot D (1993) In: Naslain R (ed) Proc of HT–CMC1. Woodhead, Abington Cambridge, pp 33–49Google Scholar
  5. 5.
    Schmidt S, Beyer S, Knabe H, Immich H, Meistring R, Gessler A (2004) Acta Astronaut 55:409CrossRefGoogle Scholar
  6. 6.
    Cheng LF, Xu YD, Zhang LT, Yin XW (2002) J Mater Sci 37:5339CrossRefGoogle Scholar
  7. 7.
    Kobayashi K, Maeda K, Sano H, Uchiyama Y (1995) Carbon 33:397CrossRefGoogle Scholar
  8. 8.
    Cheng LF, Xu YD, Zhang LT, Gao R (2001) Carbon 39:1127CrossRefGoogle Scholar
  9. 9.
    Tsou HT, Kowbel W (1995) Carbon 33:1289CrossRefGoogle Scholar
  10. 10.
    Schulte-Fischedick J, Schmidt J, Tamme R, Kröner U, Arnold J, Zeiffer B (2004) Mater Sci Eng A 386:428Google Scholar
  11. 11.
    Isola C, Appendino P, Bosco F, Ferraris M, Salvo M (1998) Carbon 36:1213CrossRefGoogle Scholar
  12. 12.
    Naslain R, Guette A, Rebillat F, Pailler R, Langlais F, Bourrat X (2004) J Solid State Chem 177:449CrossRefGoogle Scholar
  13. 13.
    Jung CH, Lee MJ, Kim CJ (2004) Materials Letters 58:609CrossRefGoogle Scholar
  14. 14.
    Chao MJ, Niu X, Yuan B, Liang EJ, Wang DS (2006) Surface & Coatings Technology 201:1102CrossRefGoogle Scholar
  15. 15.
    Vincent H, Vincent C, Berthbt MP, Bouix J, Gonzalez G (1996) Carbon 34:1041CrossRefGoogle Scholar
  16. 16.
    Nakajima T, Koh M, Katsube T (2000) Solid State Sciences 2:17CrossRefGoogle Scholar
  17. 17.
    Hach CT, Jones LE, Crossland C, Thrower PA (1999) Carbon 37:221CrossRefGoogle Scholar
  18. 18.
    Koh M, Nakajima T (1998) Carbon 36:913CrossRefGoogle Scholar
  19. 19.
    Schouler MC, Cheynet MC, Sestier K, Garden J, Gadelle P (1997) Carbon 35:993CrossRefGoogle Scholar
  20. 20.
    Berjonneau J, Langlais F, Chollon G (2007) Surface & Coatings Technology 201:7273CrossRefGoogle Scholar
  21. 21.
    Stinton DP, Besmann TM, Lowden RA (1988) Amer Ceram Soc Bull 67:369Google Scholar
  22. 22.
    Way BM, Dahn JR, Tiedje T, Myrtle K, Kasrai M (1992) Phys Rev B 46:1697CrossRefGoogle Scholar
  23. 23.
    Cermignani W, Paulson TE, Onneby C, Pantano CG (1995) Carbon 33:367CrossRefGoogle Scholar
  24. 24.
    Derre A, Filipozzi L, Peron F (1993) J Phys IV 3(C3):195CrossRefGoogle Scholar
  25. 25.
    Jacques S, Guette A, Bourrat X, Langlais F, Guimon C, Labrugere C (1996) Carbon 34:1135CrossRefGoogle Scholar
  26. 26.
    Kouvetakis J, Sasaki T, Shen C, Hagiwara R, Lerner M, Krishana KM (1989) Synthetic Met 34:1CrossRefGoogle Scholar
  27. 27.
    Jansson U, Carlsson JO, Stridh B, Soederberg S, Olsson M (1989) Thin Solid Films 172:81CrossRefGoogle Scholar
  28. 28.
    Oliveira JC, Conde O (1997) Thin Solid Films 307:29CrossRefGoogle Scholar
  29. 29.
    Zeng Y, Su KH, Deng JL, Wang T, Zeng QF, Cheng LF, Zhang LT, Xu YD (2008) J Mol Struct (THEOCHEM) 861:103CrossRefGoogle Scholar
  30. 30.
    Liu YS, Zhang LT, Cheng LF, Zeng QF, Zhang WH (2009) Applied Surface Science 255:5729CrossRefGoogle Scholar
  31. 31.
    Yang WB, Zhang LT, Cheng LF, Liu YS, Xu YD (2007) Acta Materiae Compos Sin 24:103Google Scholar
  32. 32.
    Yang WB, Zhang LT, Liu YS, Cheng LF, Zhang WH (2007) Appl Compos Mater 14:277CrossRefGoogle Scholar
  33. 33.
    Liu YS, Zhang LT, Cheng LF, Yang WB, Xu YD (2009) Applied Surface Science 255:8761CrossRefGoogle Scholar
  34. 34.
    Wang T, Su KH, Deng JL, Zeng Y, Zeng QF, Cheng LF, Zhang LT (2008) Theor Compu Chem 7:1269CrossRefGoogle Scholar
  35. 35.
    Joly A, Hebd CR (1883) Seances Acad Sci 97:456Google Scholar
  36. 36.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian Inc. PittsburghGoogle Scholar
  37. 37.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  38. 38.
    Burke K, Perdew JP, Wang Y (1998) In: Dobson JF, Vignale G, Das MP (Eds.) Electronic density functional theory: recent progress and new directions. Plenum Press, New YorkGoogle Scholar
  39. 39.
    Su KH, Wei J, Hu XL, Yue H, Lu L, Wang Y, Wen ZY (2000) Acta Physiologica Chimica Sinica 16:643Google Scholar
  40. 40.
    Su KH, Wei J, Hu XL, Yue H, Lu L, Wang Y, Wen ZY (2000) Acta Physiologica Chimica Sinica 16:718Google Scholar
  41. 41.
  42. 42.
    Garrett BC, Truhlar DG (1983) J Phys Chem 87:4553Google Scholar
  43. 43.
    Hegarty D, Robb MA (1979) Mol Phys 38:1795CrossRefGoogle Scholar
  44. 44.
    Eade RHA, Robb MA (1981) Chem Phys Lett 83:362CrossRefGoogle Scholar
  45. 45.
    Schlegel HB, Robb MA (1982) Chem Phys Lett 93:43CrossRefGoogle Scholar
  46. 46.
    Bernardi F, Bottini A, McDougall JJW, Robb MA, Schlegel HB (1984) Far Symp Chem Soc 19:137CrossRefGoogle Scholar
  47. 47.
    Yamamoto N, Vreven T, Robb MA, Frisch MJ, Schlegel HB (1996) Chem Phys Lett 250:373CrossRefGoogle Scholar
  48. 48.
    Frisch MJ, Ragazos IN, Robb MA, Schlegel HB (1992) Chem Phys Lett 189:524CrossRefGoogle Scholar
  49. 49.
    Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) J Chem Phys 110:4703CrossRefGoogle Scholar
  50. 50.
    Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650CrossRefGoogle Scholar
  51. 51.
    Wang SK, Zhang QZ, Gu YS (2004) Acta Chim Sinica 62:550Google Scholar
  52. 52.
    Koch LC, Marshall P, Ravishankara AR (2004) J Phys Chem A 108:5205CrossRefGoogle Scholar
  53. 53.
    Curtiss LA, Raghavachari K, Redfern PC (1997) J Chem Phys 106:1063CrossRefGoogle Scholar
  54. 54.
    Curtiss LA, Redfern PC, Raghavachari K (1998) J Chem Phys 109:42CrossRefGoogle Scholar
  55. 55.
    Kevill DN, Rissmann TJ (1986) J Cryst Growth 74:210CrossRefGoogle Scholar
  56. 56.
    Moss TS (1995) PhD Thesis, Georgia Institute of Technology. AtlantaGoogle Scholar
  57. 57.
    Moss TS, Lackey WJ, More KL (1998) J Am Ceram Soc 81:3077CrossRefGoogle Scholar
  58. 58.
    Hannache H, Langlais F, Naslain R (1985) Proceedings of the Fifth European Conference on Chemical Vapour Deposition. Uppsala University, Department of Chemistry, UppsalaGoogle Scholar
  59. 59.
    Berjonneau J, Chollon G, Langlais F (2006) J Electrochem Soc 153:795CrossRefGoogle Scholar
  60. 60.
  61. 61.
    Chase Jr MW (1998) J Phys Chem Ref Data, Monograph No. 9Google Scholar
  62. 62.
    Lide DR (1996–1997) Section 5: thermochemistry, electrochemistry, and kinetics. CRC Handbook of Chemistry and Physics, 77th edn. CRC Press, New YorkGoogle Scholar
  63. 63.
    Lias SG, Bartmess JE, Liebman JF, Holmes JL, Levin RD, Mallard WG (1998) J Phys Chem Ref Data, (Suppl. 1):45Google Scholar
  64. 64.
    Schlegel HB, Stephen JH (1994) J Phys Chem 98:11178CrossRefGoogle Scholar
  65. 65.
    Yao XP, Su KH, Wang X, Zeng QF, Cheng LF, Xu YD, Zhang LT (2007) Comput Mat Sci 40:504–524. Erratum (2008) Comput Mat Sci 44:838Google Scholar
  66. 66.
    Wigner EP, Witmer EE (1928) Z Phys 51:859CrossRefGoogle Scholar
  67. 67.
    Qu YN, Su KH, Wang X, Zeng QF, Cheng LF, Zhang LT (2010) J Comput Chem. doi: 10.1002/jcc

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Xiaoqiong Jiang
    • 1
  • Kehe Su
    • 1
    Email author
  • Xin Wang
    • 1
  • Yanli Wang
    • 1
  • Yan Liu
    • 1
  • Qingfeng Zeng
    • 2
  • Laifei Cheng
    • 2
  • Litong Zhang
    • 2
  1. 1.School of Natural and Applied SciencesNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.National Key Laboratory of Thermostructure Composite MaterialsNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations