Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 507–517 | Cite as

Theoretical study of spin–orbit coupling and kinetics in spin-forbidden reaction between Ta(NH2)3 and N2O

  • Ling Ling Lv
  • Yong Cheng WangEmail author
  • Hui Wen Liu
  • Qiang Wang
Regular Article


The activation mechanism of the nitrous oxide (N2O) with the Ta(NH2)3 complex on the singlet and triplet potential energy surfaces has been investigated using the hybrid exchange correlation functional B3LYP. The minimum energy crossing point (MECP) is located by using the methods of Harvey et al. The rate-determining step of the N–O activation reaction is the intersystem crossing from 1 2 to 3 2. The reacting system will change its spin multiplicities from the singlet state to the triplet state near MECP-1, which takes place with a spin crossing barrier of 32.5 kcal mol−1, and then move on the triplet potential energy surface as the reaction proceeds. Analysis of spin–orbit coupling (SOC) using localized orbitals shows that MECP-1 will produce the significant SOC matrix element, the value of SOC is 272.46 cm−1, due to the electron shift between two perpendicular π orbitals with the same rotation direction and the contribution from heavy atom Ta. The rate coefficients are calculated using Non-adiabatic Rice-Ramsperger-Kassel-Marcus (RRKM). Results indicate that the coefficients, k(E), are exceedingly high, k(E) > 1012 s−1, for energies above the intersystem crossing barrier (32.5 kcal mol−1); however, in the lower temperature range of 200–600 K, the intersystem crossing is very slow, k(T) < 10−6 s−1.


Ta(NH2)3 and N2Spin–orbit coupling Non-adiabatic RRKM 



We wish to thank the National Natural Science Foundation of China (Grant No. 20873102) for the support of this research and we also thank TianShui Normal University for grant the ‘QingLan’ talent engineering funds.


  1. 1.
    Prather RA, Ehhalt DH (2001) In: Houghton JT et al (eds) Climate change 2001: the Scientific Basis. Cambridge University Press, New YorkGoogle Scholar
  2. 2.
    Tishchenko O, Vinckier C, Nguyen MT (2004) J Phys Chem. A 108:1268Google Scholar
  3. 3.
    Delabie A, Pierloot K (2002) J Phys Chem A 106:5679CrossRefGoogle Scholar
  4. 4.
    Wiesenfeid JR, Yuen MJ (1976) Chem Phys Lett 42:293CrossRefGoogle Scholar
  5. 5.
    Ritter D, Weisshaar JC (1989) J Phys Chem 93:1576CrossRefGoogle Scholar
  6. 6.
    Ritter D, Weisshaar JC (1990) J Phys Chem 94:4907CrossRefGoogle Scholar
  7. 7.
    Narayan SA, Futerko PM, Fontijn A (1992) J Phys Chem 96:290CrossRefGoogle Scholar
  8. 8.
    Futerko PM, Fontijn A (1993) J Chem Phys 98:7004CrossRefGoogle Scholar
  9. 9.
    Campbell ML, MeClean RE (1993) J Phys Chem 97:7942CrossRefGoogle Scholar
  10. 10.
    Campbell ML (1996) J Phys Chem 100:19430CrossRefGoogle Scholar
  11. 11.
    Stirling A (1998) J Phys Chem A 102:6565CrossRefGoogle Scholar
  12. 12.
    Delabie A, Vinckier C, Flock M, Pierloot K (2001) J Phys Chem A 105:5479CrossRefGoogle Scholar
  13. 13.
    Lv LL, Liu XW, Wang YC (2006) J Mol Struct: THEOCHEM 774:59CrossRefGoogle Scholar
  14. 14.
    Lv LL, Liu XW, Wang YC (2005) J Mol Struct: THEOCHEM 724:185CrossRefGoogle Scholar
  15. 15.
    Laplaza CE, Cumming CC (1995) Science 268:861CrossRefGoogle Scholar
  16. 16.
    Laplaza CE, Odom AL, Davis WM, Cummings CC, Protasiewicz JD (1995) J Am Soc Chem 117:4999CrossRefGoogle Scholar
  17. 17.
    Mindiola DJ, Meyer K, Cherry JPF, Baker TA, Cummins CC (2000) Organometallics 19:1622CrossRefGoogle Scholar
  18. 18.
    Graham DC, Beran GJO, Head-Gordon M, Christian G, Stranger R, Yates BF (2005) J Phys Chem A 109:6762CrossRefGoogle Scholar
  19. 19.
    Johnson AR, Davis WM, Cummins CC, Serron S, Nolan SP, Musaev DG, Morokuma K (1998) J Am Soc Chem 120:2071CrossRefGoogle Scholar
  20. 20.
    Greco JB, Peter JC, Baker TA, Davis WM, Cummins CC, Wu G (2001) J Am Soc Chem 123:5003CrossRefGoogle Scholar
  21. 21.
    Peters JC, Baraldo LM, Baker TA, Johnson AR, Cummins CC (1999) J Organomet Chem 591:24CrossRefGoogle Scholar
  22. 22.
    Ariafard A, Brookes NJ, Stranger R, Yates BF (2008) J Am Soc Chem 130:11928CrossRefGoogle Scholar
  23. 23.
    Fickes MG, Odom AL, Cummins CC (1997) Chem Commun No 20:1993CrossRefGoogle Scholar
  24. 24.
    Khoroshun DV, Musaev DG, Morokuma K (1999) Organometallics 18:5653CrossRefGoogle Scholar
  25. 25.
    Cherry JPF, Johnson AR, Baraldo LM, Tsai YC, Cummins CC, Kryatov SV, Rybak-Akimova EV, Capps KB, Hoff CD, Haar CM, Nolan SP (2001) J Am Soc Chem 123:7271CrossRefGoogle Scholar
  26. 26.
    Christian GJ, Stranger R, Yates BF (2006) Inorg Chem 45:6951CrossRefGoogle Scholar
  27. 27.
    Heinemann C, Cornehl HH, Schrolder D, Dolg M, Schwarz H (1996) Inorg Chem 35:2463CrossRefGoogle Scholar
  28. 28.
    Armentrout PB (1991) Science 251:175CrossRefGoogle Scholar
  29. 29.
    Rue C, Armentrout PB, Kretzschmar I, Schröder D, Harvey JN, Schwarz H (1999) J Chem Phys 110:7858CrossRefGoogle Scholar
  30. 30.
    Yoshizawa K, Shiota Y, Yamabe T (1999) J Chem Phys 111:538CrossRefGoogle Scholar
  31. 31.
    Harvey JN, Aschi M, Schwarz H, Koch W (1998) Theor Chem Accts 99:95Google Scholar
  32. 32.
    Harvey JN (2007) Phys Chem Chem Phys 9:331CrossRefGoogle Scholar
  33. 33.
    Harvey JN, Aschi M (1999) Phys Chem Chem Phys 1:5555CrossRefGoogle Scholar
  34. 34.
    Harvey JN, Aschi M (2003) Faraday Discuss 124:129CrossRefGoogle Scholar
  35. 35.
    Frisch MJ et al (2003) Gaussian 03 (Revision-E.01). Gaussian Inc, Pittsburgh PAGoogle Scholar
  36. 36.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265CrossRefGoogle Scholar
  37. 37.
    Dolg M, Stoll H, Preuss H (1989) J Chem Phys 90:1730CrossRefGoogle Scholar
  38. 38.
    Cho HG, Andrew L (2006) J Phys Chem A 110:3886CrossRefGoogle Scholar
  39. 39.
    Straub BF (2002) J Am Chem Soc 124:14195CrossRefGoogle Scholar
  40. 40.
    Wang YC, Zhang JH, Geng ZY (2007) Chem Phys Lett 446:8CrossRefGoogle Scholar
  41. 41.
    Wang YC, Wang Q, Geng ZY, Lv LL, Si YB, Wang QY, Liu HW, Cui DD (2009) J Phys Chem A 113:13808CrossRefGoogle Scholar
  42. 42.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0, Theoretical chemistry institute. University of Wisconsin, MadisonGoogle Scholar
  43. 43.
    Danovich D, Marian CM, Neuheuser T, Peyerimhoff SD, Shaik S (1998) J Phys Chem A 102:5923CrossRefGoogle Scholar
  44. 44.
    Isobe H, Yamanaka S, Kuramitsu S, Yamaguchi K (2008) J Am Chem Soc 130:132CrossRefGoogle Scholar
  45. 45.
    Koseki S, Schmidt MW, Gordon MS (1998) J Phys Chem. A 102:10430Google Scholar
  46. 46.
    Koseki S, Fedorov DG, Schmidt MW, Gordon MS (2001) J Phys Chem. A 105:8262Google Scholar
  47. 47.
    Schmidt MW, Baldridge KK, Boatz JA et al (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  48. 48.
    Zener C, Proc R (1932) Soc London Ser A 137:696CrossRefGoogle Scholar
  49. 49.
    Zener C, Proc R (1933) Soc London Ser A 140:660CrossRefGoogle Scholar
  50. 50.
    Delos JB (1973) J Chem Phys 59:2365CrossRefGoogle Scholar
  51. 51.
    Lower SK, El-Sayed MA (1966) Chem Rev 66:199CrossRefGoogle Scholar
  52. 52.
    Richards WG, Trivedi HP, Cooper DL (1981) Spin-orbit Coupling in Molecules. Oxford University Press, New YorkGoogle Scholar
  53. 53.
    Foster J, Boys SF (1960) Rev Mod Phys 32:300CrossRefGoogle Scholar
  54. 54.
    Salem L, Rowland C (1972) Angew Chem Int Ed Engl 11:92CrossRefGoogle Scholar
  55. 55.
    Michl J (1996) J Am Chem Soc 118:3568CrossRefGoogle Scholar
  56. 56.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ling Ling Lv
    • 1
    • 2
  • Yong Cheng Wang
    • 1
    Email author
  • Hui Wen Liu
    • 1
  • Qiang Wang
    • 1
  1. 1.College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanZhouChina
  2. 2.College of Life science and ChemistryTianshui Normal UniversityTianshuiChina

Personalised recommendations