Advertisement

Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 493–506 | Cite as

Theoretical study on the role of cooperative solvent molecules in the neutral hydrolysis of ketene

  • Xiao-Peng Wu
  • Xi-Guang Wei
  • Xiao-Ming Sun
  • Yi RenEmail author
  • Ning-Bew WongEmail author
  • Wai-Kee Li
Regular Article

Abstract

The results of a theoretical study of the reaction mechanism for the neutral hydration of ketene, H2C=C=O + (n + 1) H2O → CH3COOH + nH2O (n = 0–4), in solution are presented. All structures were optimized and characterized at the MP2(fc)/6-31 + G* level of theory, and then re-optimized by MP2(fc)/6-311 ++G**, and the effect of the bulk solvent is taken into account according to the conductor-like polarized continuum model (CPCM) using the gas MP2(fc)/6-311 ++G** geometries. Energies were refined for five-water hydration at higher level of theory, QCISD(T)(fc)/6-311 ++G**//MP2(fc)/6-311 ++G**. In the combined supermolecular/continuum model, one water molecule directly attacks the central C-atom, and the other four explicit water molecules are divided into two groups, one acting as catalyst(s) by participating in the proton transfer to reduce the tension of proton transfer ring, and the other being placed near the non-reactive oxygen or carbon atom in order to catalyze the hydration by engaging in hydrogen-bonding to the substrate (the so-called cooperative effect). Between the two possible nucleophilic addition reactions of water molecule, across the C=O bond or the C=C bond, the former one is preferred. Our calculations suggest that the favorable hydrolysis mechanism of ketene involves a sort of eight-membered ring transition structure formed by a three-water proton transfer loop, and a cooperative dimeric water near the non-reactive carbon-atom. The best-estimated in the present paper for the rate-determining barrier in solution, \( \Updelta G_{\text{sol}}^{ \ne } \) (298 K), is about 58 kJ/mol, reasonably close to the available experimental result.

Keywords

Ketene Hydrolysis mechanism Supermolecular/continuum model Cooperative effect Solvent effect 

Notes

Acknowledgments

This work is supported by a Strategic Grant (Project No. 7002334) awarded to NBW by City University of Hong Kong.

Supplementary material

214_2010_738_MOESM1_ESM.pdf (93 kb)
Supplementary material 1 (PDF 93 kb)

References

  1. 1.
    Matsunaga H, Kiyoshi Ikeda, Iwamoto KI, Suzuki Y, Sato M (2009) Tetrahedron Lett 50:2334CrossRefGoogle Scholar
  2. 2.
    Nahmany M, Melman A (2001) Org Lett 3:3733CrossRefGoogle Scholar
  3. 3.
    Cevasco G, Thea S (1994) J Org Chem 59:6274CrossRefGoogle Scholar
  4. 4.
    Frey J, Rapport Z (1996) J Am Chem Soc 118:5169CrossRefGoogle Scholar
  5. 5.
    Shelkov R, Nahmany M, Melman A (2002) J Org Chem 67:8975CrossRefGoogle Scholar
  6. 6.
    Finnerty JJ, Wentrup C (2005) J Org Chem 70:9735CrossRefGoogle Scholar
  7. 7.
    Orlova G, Blagojevic V, Bohme DK (2006) J Phys Chem A 110:8266CrossRefGoogle Scholar
  8. 8.
    Markb I, Ronsmans B, Heshbain-Frisque A-M, Dumas S, Ghosez L, Ernst B, Greuter H (1985) J Am Chem Soc 107:2192CrossRefGoogle Scholar
  9. 9.
    AI-Husaini AH, Moore HW (1985) J Org Chem 50:2595CrossRefGoogle Scholar
  10. 10.
    Abbiati G, Contini A, Nava D, Rossi E (2009) Tetrahedron 65:4664CrossRefGoogle Scholar
  11. 11.
    Lu J, Xue Y, Zhang H, Kim CK, Xie DQ, Yan GS (2008) J Phys Chem A 112:4501CrossRefGoogle Scholar
  12. 12.
    Taggi AE, Hafez AM, Wack H, Young B, Ferraris D, Lectka T (2002) J Am Chem Soc 124:6626CrossRefGoogle Scholar
  13. 13.
    Cannizzaro CE, Houk KN (2004) J Am Chem Soc 126:10992CrossRefGoogle Scholar
  14. 14.
    Baigrie LM, Lenoir D, Seikaly HR, Tidwell TT (1985) J Org Chem 50:2105CrossRefGoogle Scholar
  15. 15.
    Baigrie LM, Seikaly HR, Tidwell TT (1985) J Am Chem Soc 107:5391CrossRefGoogle Scholar
  16. 16.
    Ma NL, Wong MW (2000) Eur J Org Chem 1411Google Scholar
  17. 17.
    Gong L, McAllister MA, Tidwell TT (1991) J Am Chem Soc 113:6021CrossRefGoogle Scholar
  18. 18.
    Morales G, Martinez R (2009) J Phys Chem A 113:8683CrossRefGoogle Scholar
  19. 19.
    Bouma WJ, Nobes RH, Radom L, Woodward CE (1982) J Org Chem 47:1869CrossRefGoogle Scholar
  20. 20.
    Bothe E, Dessouki AM, Schulte-Frohlinde D (1980) J Phys Chem 84:3270CrossRefGoogle Scholar
  21. 21.
    Frey J, Rappoport Z (1995) J Am Chem Soc 117:1161CrossRefGoogle Scholar
  22. 22.
    Allen AD, Tidwell TT (1987) J Am Chem Soc 109:2774CrossRefGoogle Scholar
  23. 23.
    Chiang Y, Fedorov AV, Kresge AJ, OnyidoI TidwellTT (2004) J Am Chem Soc 126:9382CrossRefGoogle Scholar
  24. 24.
    Acton AW, Allen AD, Antunes LM, Fedorov AV, Najafian K, Tidwell TT, Wagner BD (2002) J A Chem Soc 124:13790CrossRefGoogle Scholar
  25. 25.
    Chiang Y, Kresge AJ, Nikolaev VA, Popik VV (1997) J Am Chem Soc 119:11183CrossRefGoogle Scholar
  26. 26.
    Chiang Y, Kresge AJ, Meng Q, Morita Y, Yamamoto Y (1999) J Am Chem Soc 121:8345CrossRefGoogle Scholar
  27. 27.
    Chang JA, Kresge AJ, Nikolaev VA, Popik VV (2003) J Am Chem Soc 125:6478CrossRefGoogle Scholar
  28. 28.
    Chiang Y, Guo HX, Kresge AJ, Tee OS (1996) J Am Chem Soc 118:3386CrossRefGoogle Scholar
  29. 29.
    Raspoet G, Nguyen MT (1998) J Org Chem 63:9669CrossRefGoogle Scholar
  30. 30.
    Rodriguez-Otero J, Hermida-Ramon JM, Cabaleiro-Lago EM (2007) Eur J Org Chem. 2344Google Scholar
  31. 31.
    Nguyen MT, Hegarty AF (1984) J Am Chem Soc 106:1552CrossRefGoogle Scholar
  32. 32.
    Skancke PN (1992) J Phys Chem 96:8065CrossRefGoogle Scholar
  33. 33.
    Nguyen MT, Raspoet G (1999) Can J Chem 77:817CrossRefGoogle Scholar
  34. 34.
    Nguyen MT, Matus MH, Jackson VE, Ngan VT, Rustad JR, Dixon DA (2008) J Phys Chem A 112:10386CrossRefGoogle Scholar
  35. 35.
    Nguyen MT, Raspoet G, Vanquickenborne LG, Van Duijen PT (1997) J Phys Chem A 101:7379CrossRefGoogle Scholar
  36. 36.
    Merz KM (1990) J Am Chem Soc 112:7973CrossRefGoogle Scholar
  37. 37.
    Liang JY, Lipscomb WN (1986) J Am Chem Soc 108:5051CrossRefGoogle Scholar
  38. 38.
    Lewis M, Glaser R (2003) J Phys Chem A 107:6814CrossRefGoogle Scholar
  39. 39.
    Deng C, Li QG, Ren Y, Chu WongNB, SY ZhuH (2008) J Comput Chem 29:466CrossRefGoogle Scholar
  40. 40.
    Deng C, Wu XP, Sun XM, Ren Y, Sheng YH (2009) J Comput Chem 30:285CrossRefGoogle Scholar
  41. 41.
    Lewis M, Glaser R (1998) J Am Chem Soc 120:8541CrossRefGoogle Scholar
  42. 42.
    Lewis M, Glaser R (2002) Chem Eur J 8:1934CrossRefGoogle Scholar
  43. 43.
    Tordini F, Bencini A, Bruschi M, Gioia LD, Zampella G, Fantucci P (2003) J Phy Chem A 107:1188CrossRefGoogle Scholar
  44. 44.
    Nguyen MT, Raspoet G, Vanquickenbome LG (1999) J Chem Soc Perkin Trans 2:813Google Scholar
  45. 45.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995CrossRefGoogle Scholar
  46. 46.
    Rappe AK, Casewit CJ, Colwell KS, Goddard WAIII, Skiff WM (1992) J Am Chem Soc 114:10024CrossRefGoogle Scholar
  47. 47.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr , Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gromperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrewski G, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskkorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Cheng W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision D.01. Gaussian Inc, Pittsburgh, PAGoogle Scholar
  48. 48.
    Mourik TV (2005) Chem Phys Lett 414:364CrossRefGoogle Scholar
  49. 49.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.College of Chemistry and Key State Laboratory of BiotherapySichuan UniversityChengduPeople’s Republic of China
  2. 2.Department of Biology and ChemistryCity University of Hong KongKowloonHong Kong
  3. 3.Department of ChemistryThe Chinese University of Hong KongShatinHong Kong

Personalised recommendations