Advertisement

Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 485–492 | Cite as

Are pterins able to modulate oxidative stress?

  • Ana MartínezEmail author
  • Andrés Barbosa
Regular Article

Abstract

Pterins (also known as pteridines) are common animal colorants that constitute heterocyclic compounds and have the highest nitrogen content of any pigment analyzed from animals. It has been reported that pterins modulate oxidative stress as these molecules are able to scavenge free radicals. Previous reports suggest three possible mechanisms that are responsible for scavenging free radicals; these are electron transfer (ET) reaction, hydrogen atom transfer (HAT) and radical addition. In this paper, the facility to scavenge free radicals (antiradical power) of pterins is analyzed, using density functional theory calculations and considering two possible mechanisms: ET and HAT. For the electron transfer process, considering the electron donor facility of the free radical scavenger molecules, vertical ionization energy of pterins indicates that the antiradical power of those pterins is lower than the antiradical power of any carotenoids (except for tetrahydrobiopterin). In terms of the HAT mechanism, the bond dissociation energy involved in the removal of one hydrogen atom from pterins is higher than for carotenoids (except for sepiapterin and 7,8-dihydrobiopterin). It can be expected that the most reactive molecules are those that have the smallest dissociation energy since the dissociation of the hydrogen atom is the first step of the reaction. This could indicate that some pterins are depicted as poorer antiradicals than carotenoids in terms of the HAT mechanism. Further studies focusing on the third mechanism (radical addition) and the kinetics of the reactions are necessary in order to fully understand the antiradical power of these substances. For this reason, work continues in order to clarify these aspects.

Keywords

pterins Animal pigments Antioxidants Radical scavengers Free radicals Oxidative stress 

Notes

Acknowledgments

This study was made possible due to funding from the Consejo Nacional de Ciencia y Tecnología (CONACyT), as well as resources provided by the Instituto de Investigaciones en Materiales IIM, UNAM. The work was carried out, using KanBalam supercomputer, provided by DGSCA, UNAM. We would like to thank The Dirección General de Servicios de Computo Académico (DGSCA) of the Universidad Nacional Autónoma de México for their excellent and free supercomputing services. We would also like to thank Caroline Karslake (Masters, Social Anthropology, Cambridge University, England) for reviewing the grammar and style of the text in English. The authors would like to acknowledge both Sara Jiménez Cortés and María Teresa Vázquez for their technical support. A.M. is grateful for financial support from the Ministerio de Educación y Ciencia de España (SAB2006-0192) and DGAPA-UNAM-México. A.B. was supported by the projects CGL2007-60369 and POL2006-05175 funded by the Spanish Ministry of Education and the European Regional Development Fund.

Supplementary material

214_2010_737_MOESM1_ESM.doc (1.2 mb)
Supplementary material 1 (DOC 1188 kb)

References

  1. 1.
    Hill GE, McGraw KJ (2006) Bird Coloration. Mechanisms and Measurements. Harvard University Press, Cambridge MassachusettsGoogle Scholar
  2. 2.
    McGraw KJ (2005) Anim Behav 69:757–764CrossRefGoogle Scholar
  3. 3.
    Oliphant LW (1987) Pigment Cell Res 1:129–131CrossRefGoogle Scholar
  4. 4.
    Oliphant LW, Hudon J (1993) Pigment Cell Res 6:205–208CrossRefGoogle Scholar
  5. 5.
    Grether GF, Hudon J, Endler JA (2001) Proc R Soc Lond Ser B 268:1245–1253CrossRefGoogle Scholar
  6. 6.
    Oettl K, Reibnegger G (2002) Current Drug Metabolism 3:203–209CrossRefGoogle Scholar
  7. 7.
    Burton GW, Ingold KU (1984) Science 224:569–573CrossRefGoogle Scholar
  8. 8.
    Böhm F, Edge R, Land EJ, McGarvey DJ, Truscott TG (1997) J Am Chem Soc 119:621–622CrossRefGoogle Scholar
  9. 9.
    Krinsky NI, Yeum KJ (2003) Biochemical and Biophysical Communications 305:754–760CrossRefGoogle Scholar
  10. 10.
    Galano A (2007) J Phys Chem B 111:12898–12908CrossRefGoogle Scholar
  11. 11.
    Martínez A, Rodríguez-Gironés MA, Barbosa A, Costas M (2008) J Phys Chem A 112:9037–9042CrossRefGoogle Scholar
  12. 12.
    Martínez A, Vargas R, Galano A (2009) J Phys Chem B 113:12113–12120CrossRefGoogle Scholar
  13. 13.
    Galano A, Vargas R, Martínez A (2010) PCCP 12:193–200Google Scholar
  14. 14.
    Martínez A, Barbosa A (2008) J Phys Chem B 112:16945–16951CrossRefGoogle Scholar
  15. 15.
    Wang L-F, Zhang H-Y (2003) Bioorg Med Chem Lett 13:3789–3792CrossRefGoogle Scholar
  16. 16.
    Li M-J, Liu L, Fu Y, Guo Q-X (2007) J Mol Struct (THEOCHEM) 815:1–9CrossRefGoogle Scholar
  17. 17.
    Chen X, Xu X, Cao Z (2007) J Phys Chem A 111:9255–9262CrossRefGoogle Scholar
  18. 18.
    Gready JE (1984) J Mol Struct (THEOCHEM) 109:231–244CrossRefGoogle Scholar
  19. 19.
    Gready JE (1985) J Mol Struct (THEOCHEM) 124:1–8CrossRefGoogle Scholar
  20. 20.
    Wormell P, Gready JE (1994) Chem Phys 179:55–69CrossRefGoogle Scholar
  21. 21.
    Dántola ML, Thomas AH, Braun AM, Oliveros E, Lorente C (2007) J Phys Chem A 111:4280–4288CrossRefGoogle Scholar
  22. 22.
    Testani JM, Dabelic R, Rasche ME (2006) Anal Biochem 358:20–24CrossRefGoogle Scholar
  23. 23.
    Lorente C, Tomas AH (2006) Acc Chem Res 39:395–402CrossRefGoogle Scholar
  24. 24.
    Petroselli G, Dántola ML, Cabrerizo FM, Capparelli AL, Lorente C, Oliveros E, Thomas AH (2008) J Am Chem Soc 130:3001–3011CrossRefGoogle Scholar
  25. 25.
    Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974–12980CrossRefGoogle Scholar
  26. 26.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, MillamJM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford, CTGoogle Scholar
  27. 27.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249CrossRefGoogle Scholar
  29. 29.
    Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54:16533–16539CrossRefGoogle Scholar
  30. 30.
    Tunning TH Jr, Hay PJ (1976) In: Schaefer HF III (ed) Modern and Theoretical Chemistry, 3rd edn. Plenum, New York, NY, pp 1–28Google Scholar
  31. 31.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654CrossRefGoogle Scholar
  32. 32.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648CrossRefGoogle Scholar
  33. 33.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comp Chem 4:294–301CrossRefGoogle Scholar
  34. 34.
    Cances MT, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041CrossRefGoogle Scholar
  35. 35.
    Mennucci B, Tomasi J (1997) J Chem Phys 106:5151–5158CrossRefGoogle Scholar
  36. 36.
    Mennucci B, Cances E, Tomasi J (1997) J Phys Chem B 101:10506–10517CrossRefGoogle Scholar
  37. 37.
    Tomasi J, Mennucci B, Cancès E (1999) J Mol Str (THEOCHEM) 464:211–226CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMéxico cityMexico
  2. 2.Departamento de Ecología EvolutivaMuseo Nacional de Ciencias Naturales, CSICMadridSpain

Personalised recommendations