Advertisement

Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 475–484 | Cite as

A theoretical investigation on the spectroscopic properties and photosensitizing capability of 5, 10, 15, 20-tetraphenylsapphyrin and 5, 10, 15, 20-tetraphenyl-26,28-diheterosapphyrins with two O, S, or Se Atoms

  • Ramón López
  • M. Isabel MenéndezEmail author
  • Mireya Santander-Nelli
  • Gloria I. Cárdenas-JirónEmail author
Regular Article

Abstract

A density functional theory (DFT) study of the V/UV spectrum and the adiabatic energy released from the triplet excited state of sapphyrin and three disubstituted derivatives (with O, S or Se atoms) is performed in order to obtain an accurate theoretical description of their capability as photosensitizers in photodynamic therapy (PDT). For the calculation of the V/UV spectra, we used two functionals already tested for porphyrin derivatives, B3LYP and PBE0, and two new ones recently proposed, MPWB1 K and M05, all of them with two different basis sets and two continuum solvent models. The best agreement with experimental data was obtained at the CPCM-M05/6-31 + G(d)//B3LYP/6-31 + G(d) level, at which errors lie in the range of 0.13–0.20 eV for the Q band in CH2Cl2 solution. A careful comparison between triplet and singlet geometries shows that the inner macrocycle enlarges, but planarity distortions lead to a volume contraction upon excitation to the triplet state for sapphyrin, and O and S heterosapphyrins, and to negligible volume changes for Se heterosapphyrin. Actually, the heterosapphyrins with S and Se atoms acquire a saddle shape in the triplet state. According to our results, the energy released from the triplet state for S- and Se- disubstituted sapphyrins could be adequate to generate activated oxygen both in the gas phase and in CH2Cl2 solution.

Keywords

Sapphyrin Heterosapphyrins Photosensitizers TD-DFT V/UV spectra Excited states 

Notes

Acknowledgments

The authors thank MEC (SPAIN, PCI2005-A7-0304), FONDECYT No 1060203, 1090700 and No 7080007 (CONICYT/CHILE) for financial support. GIC-J thanks to DICYT/USACH Apoyo Complementario for computational time provided.

Supplementary material

214_2010_735_MOESM1_ESM.doc (54 kb)
Supplementary material 1 (DOC 54 kb)
214_2010_735_MOESM2_ESM.doc (72 kb)
Supplementary material 2 (DOC 71 kb)
214_2010_735_MOESM3_ESM.doc (43 kb)
Supplementary material 3 (DOC 43 kb)
214_2010_735_MOESM4_ESM.doc (416 kb)
Supplementary material 4 (DOC 415 kb)
214_2010_735_MOESM5_ESM.doc (549 kb)
Supplementary material 5 (DOC 549 kb)
214_2010_735_MOESM6_ESM.doc (42 kb)
Supplementary material 6 (DOC 42 kb)
214_2010_735_MOESM7_ESM.doc (30 kb)
Supplementary material 7 (DOC 29 kb)

References

  1. 1.
    Dolphin D (1994) Can J Chem 72:1005CrossRefGoogle Scholar
  2. 2.
    Wang Z, Lecane PS, Thiemann P, Fan Q, Cortez C, Ma X, Tonev D, Miles D, Naumovski L, Miller RA, Magda D, Cho DG, Sessler JL, Pike BL, Yeligar SM, Karaman MW, Hacia GJ (2007) Mol Cancer 6:9CrossRefGoogle Scholar
  3. 3.
    Sessler JL, Davis JM (2001) Acc Chem Res 34:989CrossRefGoogle Scholar
  4. 4.
    Sessler JL, Seidel D (2003) Angew Chem Int Ed 42:5134CrossRefGoogle Scholar
  5. 5.
    Sessler JL, Tvemoes NA, Davis J, Anzenbacher P, Jursikova K Jr, Sato W, Seidel D, Lynch V, Black CB, Try A, Andrioletti B, Hemmi G, Mody TD, Magda DJ, Kral V (1999) Pure Appl Chem 71:2009CrossRefGoogle Scholar
  6. 6.
    Boul PJ, Cho DG, Rahman GMA, Marquez M, Ou Z, Kadish KM, Guldi DM, Sessler JL (2007) J Am Chem Soc 129:5683CrossRefGoogle Scholar
  7. 7.
    Steiner E, Fowler PW (2004) Org Biomol Chem 2:34CrossRefGoogle Scholar
  8. 8.
    Sessler JL, Cho DG, Stepiens M, Lynch V, Waluk J, Yoon ZS, Kim D (2006) J Am Chem Soc 128:12640CrossRefGoogle Scholar
  9. 9.
    Rezler EM, Seenisamy J, Bashyam S, Kim MY, White E, Wilson WD, Hurley LH (2005) J Am Chem Soc 127:9439CrossRefGoogle Scholar
  10. 10.
    Panda PK, Kang YJ, Lee CH (2005) Angew Chem Int Ed 44:4053CrossRefGoogle Scholar
  11. 11.
    Misra R, Chandrashekar TK (2008) Acc Chem Res 41:265CrossRefGoogle Scholar
  12. 12.
    Pushpan SK, Chandrashekar TK (2002) Pure Appl Chem 74:2045CrossRefGoogle Scholar
  13. 13.
    Chmielewski PJ, Latos-Grazynski L, Rachlewicz K (1995) Chem Eur J 1:68CrossRefGoogle Scholar
  14. 14.
    Narayanan SJ, Sridevi B, Chandrashekar TK, Vij A, Roy R (1998) Angew Chem Int Ed 37:3394CrossRefGoogle Scholar
  15. 15.
    Pushpan SK, Narayanan SJ, Srinivasan A, Mahajan S, Chandrashekar TK, Roy R (1998) Tetrahedron Lett 39:9249CrossRefGoogle Scholar
  16. 16.
    Rachlewicz K, Sprutta N, Chmielewski PJ, Latos-Grazynski L (1998) J Chem Soc Perkin Trans 2:969Google Scholar
  17. 17.
    Brückner C, Sternberg ED, Boyle RW, Dolphin D (1997) Chem Commun 1689Google Scholar
  18. 18.
    Szterenberg L, Latos-Grazynski L (1999) J Phys Chem A 103:3302CrossRefGoogle Scholar
  19. 19.
    Szterenberg L, Latos-Grazynski L (1999) J Mol Struct (Theochem) 490:33CrossRefGoogle Scholar
  20. 20.
    Cárdenas-Jirón GI, Venegas C, López R, Menéndez MI (2008) J Phys Chem A 112:8100CrossRefGoogle Scholar
  21. 21.
    Rachlewicz K, Sprutta N, Latos-Grazynski L, Chmielewski PJ, Szterenberg L (1998) J Chem Soc Perkin Trans 2:959Google Scholar
  22. 22.
    Petit L, Quartarolo AD, Adamo C, Russo N (2006) J Phys Chem B 110:2398CrossRefGoogle Scholar
  23. 23.
    Quartarolo AD, Russo N, Sicilia E, Lelj F (2007) J Chem Theory Comput 3:860CrossRefGoogle Scholar
  24. 24.
    Sundholm D (2000) Phys Chem Chem Phys 2:2275CrossRefGoogle Scholar
  25. 25.
    Shimizu Y, Shen Z, Okujima T, Uno H, Ono N (2004) Chem Commun 374Google Scholar
  26. 26.
    Baker JD, Zerner MC (1990) Chem Phys Lett 175:192CrossRefGoogle Scholar
  27. 27.
    Baraldi I, Carnevali A, Ponterini G, Vanossi D (1995) J Mol Struct (Theochem) 333:121CrossRefGoogle Scholar
  28. 28.
    Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454CrossRefGoogle Scholar
  29. 29.
    Foresman JB, Head-Gordon M, Pople JA, Frisch MJ (1992) J Phys Chem 96:135CrossRefGoogle Scholar
  30. 30.
    Nagashima U, Takada T, Ohno K (1986) J Chem Phys 85:4524CrossRefGoogle Scholar
  31. 31.
    Nooijen M, Barlett RJ (1997) J Chem Phys 106:6449CrossRefGoogle Scholar
  32. 32.
    Parusel ABJ, Ghosh A (2000) J Phys Chem A 104:2504CrossRefGoogle Scholar
  33. 33.
    Parusel ABJ, Grimme S (2001) J Phorphyrins Phthalocyanines 5:225CrossRefGoogle Scholar
  34. 34.
    Yamamoto Y, Noro T, Ohno K (1992) Int J Quantum Chem 42:1563CrossRefGoogle Scholar
  35. 35.
    Baerends EJ, Ricciardi G, Rosa A, van Gisbergen SJA (2002) Coord Chem Rev 230:5CrossRefGoogle Scholar
  36. 36.
    Kitao O, Ushiyama H, Miura N (1999) J Chem Phys 110:2936CrossRefGoogle Scholar
  37. 37.
    Merchán M, Ortí E, Roos BO (1994) Chem Phys Lett 226:27CrossRefGoogle Scholar
  38. 38.
    Serrano-Andrés L, Merchán M, Rubio M, Roos BO (1998) Chem Phys Lett 295:195CrossRefGoogle Scholar
  39. 39.
    Roos BO, Fülscher MP, Fülscher MP, Malmqvist PA, Merchán M, Serrano-Andrés L (1995) In: Langhoff SR (ed) Quantum mechanical electronic structure calculations with chemical accuracy. Kluwer, Dordrecht, p 357 357Google Scholar
  40. 40.
    Grimme S, Waletzke M (1999) J Chem Phys 111:5645CrossRefGoogle Scholar
  41. 41.
    van Gisbergen SJA, Rosa A, Ricciardi G, Baerends EJ (1999) J Chem Phys 111:2499CrossRefGoogle Scholar
  42. 42.
    Gwaltney SR, Barlett RJ (1998) J Chem Phys 108:6790CrossRefGoogle Scholar
  43. 43.
    Furche F, Ahlrich R (2002) J Chem Phys 117:7433CrossRefGoogle Scholar
  44. 44.
    Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218CrossRefGoogle Scholar
  45. 45.
    Gaussian 03, Revision E.01, Frisch, MJ, Trucks GW; Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JAJr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA Gaussian, Inc., Wallingford CT, 2004Google Scholar
  46. 46.
    Becke AD (1998) Phys Rev A 38:3098CrossRefGoogle Scholar
  47. 47.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  48. 48.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  49. 49.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299CrossRefGoogle Scholar
  50. 50.
    Hehre WJ, Radom L, Radom L, Pople JA, Schleyer PvR (1986) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  51. 51.
    Jaguar 5.5, Schrodinger Inc.: Portland, OR, 2004Google Scholar
  52. 52.
    Liu X-J, Pan Q-J, Meng J, Feng J-K (2006) J Mol Struct (Theochem) 765:61CrossRefGoogle Scholar
  53. 53.
    Petit L, Adamo C, Russo N (2005) J Phys Chem B 109:12214CrossRefGoogle Scholar
  54. 54.
    Adamo C, Barone V (1999) J Chem Phys 110:6158CrossRefGoogle Scholar
  55. 55.
    Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029CrossRefGoogle Scholar
  56. 56.
    Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908CrossRefGoogle Scholar
  57. 57.
    Zhao Y, Truhlar DG (2005) J Chem Theory Comput 1:415CrossRefGoogle Scholar
  58. 58.
    Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) J Chem Phys 119:12129CrossRefGoogle Scholar
  59. 59.
    Zhao Y, Truhlar DG (2007) J Chem Theory Comput 3:289CrossRefGoogle Scholar
  60. 60.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995CrossRefGoogle Scholar
  61. 61.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999CrossRefGoogle Scholar
  62. 62.
    Tomasi J, Persico M (1994) Chem Rev 94:2027CrossRefGoogle Scholar
  63. 63.
    Cossi M, Barone V (2001) J Chem Phys 115:4708CrossRefGoogle Scholar
  64. 64.
    Improta R, Barone V, Santoro F (2007) Angew Chem Int Ed 46:405CrossRefGoogle Scholar
  65. 65.
    Santoro F, Barone V, Gustavsson T, Improta R (2006) J Am Chem Soc 128:16312CrossRefGoogle Scholar
  66. 66.
    Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2005) J Chem Phys 124:94107CrossRefGoogle Scholar
  67. 67.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899CrossRefGoogle Scholar
  68. 68.
    Zhao Y, Schultz NE, Truhlar DG (2005) J Chem Phys 123:161103CrossRefGoogle Scholar
  69. 69.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364CrossRefGoogle Scholar
  70. 70.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41:157CrossRefGoogle Scholar
  71. 71.
    Gouterman M (1959) J Chem Phys 30:1139CrossRefGoogle Scholar
  72. 72.
    Gouterman M (1961) J Mol Spectrosc 6:138CrossRefGoogle Scholar
  73. 73.
    Gouterman M (1965) J Mol Spectrosc 16:415CrossRefGoogle Scholar
  74. 74.
    Gouterman M, Wagniere GH, Snyder LC (1963) J Mol Spectrosc 11:108CrossRefGoogle Scholar
  75. 75.
    Gensch T, Viappiani C, Braslavsky SE (1999) J Am Chem Soc 121:10573CrossRefGoogle Scholar
  76. 76.
    Wang Z, Lecane PS, Thiemann P, Fan Q, Cortez C, Ma X, Tonev D, Miles D, Naumovski L, Miller RA, Magda D, Cho DG, Sessler JL, Pike BL, Yeligar SM, Karaman MW, Hacia JG (2007) Mol Cancer 6:1CrossRefGoogle Scholar
  77. 77.
    Cho DG, Plitt P, Kim SK, Lynch V, Hong SJ, Lee CH, Sessler JL (2008) J Am Chem Soc 130:10502CrossRefGoogle Scholar
  78. 78.
    Zhang P, Steelant W, Kumar M, Scholfield M (2007) J Am Chem Soc 129:4526CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Departamento de Química Física y Analítica, Facultad de QuímicaUniversidad de OviedoOviedo, AsturiasSpain
  2. 2.Laboratorio de Química Teórica, Departamento de Ciencias del Ambiente, Facultad de Química y BiologíaUniversidad de Santiago de Chile (USACH)SantiagoCHILE

Personalised recommendations