Advertisement

Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 467–474 | Cite as

Electronic structures and spectroscopic properties of promising highly efficient red phosphorescent Os(II)(LR)2(PH3)2 complexes: a theoretical exploration

  • Jian-Po Zhang
  • Bao-Hui Xia
  • Li Jin
  • Hong-Xing ZhangEmail author
Regular Article
  • 95 Downloads

Abstract

The red phosphorescent osmium(II) complexes [Os(LR)2(PH3)2] (L = 2-pyridyltriazole (ptz): R = H (1a), CF3 (1b), t-Bu (1c)); L = 2-pyridylpyrazole (ppz): R = H (2a), CF3 (2b), t-Bu (2c)); L = 2-phenylpyridine (ppy): R = H (3a)) were explored using density functional theory (DFT) methods. The ground- and excited-state geometries of the complexes were optimized at the B3LYP/LANL2DZ and UB3LYP/LANL2DZ levels, respectively. The absorption and phosphorescence of the complexes in CH2Cl2 media were calculated based on the optimized ground- and excited-state geometries using time-dependent density functional theory method with the polarized continuum model. The optimized geometry structural parameters of the complexes in the ground state agree well with the corresponding experimental values. The lower-lying unoccupied molecular orbitals of the complexes are dominantly localized on the L ligand, while the higher-lying occupied ones are composed of Os(II) atom and L ligand. The low-lying metal-to-ligand and intraligand charge transfer (MLCT/ILCT) transitions and high-lying ILCT transitions are red-shifted with the increase in the π-donating ability of the L ligand and the π electron-donating ability of R substituent. The calculation revealed that the phosphorescence originated from 3MLCT/3ILCT excited state. However, the complex 3a displayed different types of MLCT/ILCT excited state compared with that of 1a2c, and the different types of transition were also found in the absorption. In addition, we found that the phosphorescence quantum efficiency of Os(II) complexes is related to the metal composition in the high-energy occupied molecular orbitals, it will be helpful to designing highly efficient phosphorescent materials.

Keywords

Osmium(II) complexes Electronic structures Spectroscopic properties TD-DFT calculations UB3LYP methods 

Notes

Acknowledgments

This work is supported by the Natural Science Foundation of China (Grant Nos. 20573042, 20333050, and 20173021) and the Foundation of State Key Laboratory of Theoretical and Computational Chemistry.

Supplementary material

214_2010_734_MOESM1_ESM.doc (664 kb)
Supporting Information (DOC 663 kb)

References

  1. 1.
    Demadis KD, Hartshorn CM, Meyer TJ (2001) Chem Rev 101:2655CrossRefGoogle Scholar
  2. 2.
    Carlson B, Phelan GD, Kaminsky W, Dalton L, Jiang X, Liu S, Jen AKY (2002) J Am Chem Soc 124:14162CrossRefGoogle Scholar
  3. 3.
    Xin H, Li F, Shi M, Bian ZQ, Huang HC (2003) J Am Chem Soc 125:7166CrossRefGoogle Scholar
  4. 4.
    Lo KKW, Chung CKT, Lee KM, Lui LH, Tsang KHK, Zhu NY (2003) Inorg Chem 42:6886CrossRefGoogle Scholar
  5. 5.
    Hamilton JG, Rooney JJ, DeSimone JM, Mistele C (1998) Macromolecules 31:4387CrossRefGoogle Scholar
  6. 6.
    Gassner F, Dinjus E, Gorls H, Leitner W (1996) Organometallics 15:2078CrossRefGoogle Scholar
  7. 7.
    Haynes A, Maitlis PM, Morris GE, Sunley GJ, Adams H, Badger PW, Bowers CM, Cook DB, Elliott PIP, Ghaffar T, Green H, Griffin TR, Payne M, Pearson JM, Taylor MJ, Vickers PW, Watt RJ (2004) J Am Chem Soc 126:2847CrossRefGoogle Scholar
  8. 8.
    Kawamura Y, Goushi K, Brooks J, Brown JJ, Sasabe H, Adachi C (2005) Appl Phys Lett 86:1104CrossRefGoogle Scholar
  9. 9.
    Baldo MA, Thompson ME, Forrest SR (1999) Pure Appl Chem 71:2095CrossRefGoogle Scholar
  10. 10.
    Yang QZ, Wu LZ, Wu ZX, Zhang LP, Tung CH (2002) Inorg Chem 41:5653CrossRefGoogle Scholar
  11. 11.
    Balzani V, Barigelletti F, De Cola L (1990) Top Curr Chem 158:31Google Scholar
  12. 12.
    Craig DC, Scudder ML, McHale WA, Goodwin HA (1998) Aust J Chem 51:1131CrossRefGoogle Scholar
  13. 13.
    Chen YL, Sinha C, Chen IC, Liu KL, Chi Y, Yu JK, Chou PT, Lu TH (2003) Chem Commun 3046Google Scholar
  14. 14.
    Chou PT, Chi Y (2007) Chem Eur J 13:380CrossRefGoogle Scholar
  15. 15.
    Chou PT, Chi Y (2006) Eur J Inorg Chem 3319Google Scholar
  16. 16.
    Kappaun S, Sax S, Eder S, Moller KC, Waich K, Niedermair F, Saf R, Mereiter K, Jacob J, Mullen K, List EJW, Slugovc C (2007) Chem Mater 19:1209CrossRefGoogle Scholar
  17. 17.
    Wu FI, Shih PI, Shu CF, Tung YL, Chi Y (2005) Macromolecules 38:9028CrossRefGoogle Scholar
  18. 18.
    Statmann RE, Scuseria GE (1998) J Chem Phys 109:8218CrossRefGoogle Scholar
  19. 19.
    Paul F, Costa G, Bondon A, Gauthier N, Sinbandhit S, Toupet L, Costuas K, Halet JF, Lapinte C (2007) Organometallics 26:874CrossRefGoogle Scholar
  20. 20.
    O’Grady E, Kaltsoyannis N (2004) Phys Chem Chem Phys 6:680CrossRefGoogle Scholar
  21. 21.
    Pan QJ, Zhang HX (2004) Organometallics 23:5198CrossRefGoogle Scholar
  22. 22.
    Pan QJ, Fu HG, Yu HT, Zhang HX (2006) Inorg Chem 45:8729CrossRefGoogle Scholar
  23. 23.
    PyykkÖ P (2004) Angew Chem Int Ed 43:4412CrossRefGoogle Scholar
  24. 24.
    Bryce AB, Charnochk JM, Pattrichk RAD, Lennie AR (2003) J Phys Chem A 107:2516CrossRefGoogle Scholar
  25. 25.
    Nemykin VN, Makarova EA, Grosland JO, Hadt RG, Koposov AY (2007) Inorg Chem 46:9591CrossRefGoogle Scholar
  26. 26.
    Becke AD (1987) Phys ReV A 38:3098CrossRefGoogle Scholar
  27. 27.
    Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439CrossRefGoogle Scholar
  28. 28.
    Cossi M, Scalmani G, Regar N, Barone V (2002) J Chem Phys 117:43CrossRefGoogle Scholar
  29. 29.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299CrossRefGoogle Scholar
  30. 30.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Shida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Wallingford, Gaussian, IncGoogle Scholar
  31. 31.
    Che CM, Lai TF, Chung WC, Schaefer WP, Gray HB (1987) Inorg Chem 26:3907CrossRefGoogle Scholar
  32. 32.
    Liu T, Zhang HX, Xia BH (2007) J Phys Chem A 111:8724CrossRefGoogle Scholar
  33. 33.
    Zhang JP, Zhou X, Liu T, Bai FQ, Zhang HX, Tang AQ (2008) Theor Chem Acc 121:123CrossRefGoogle Scholar
  34. 34.
    Liu T, Xia BH, Zhou X, Zhang HX, Pan QJ, Gao JS (2007) Organometallics 26:143CrossRefGoogle Scholar
  35. 35.
    Zhou X, Zhang HX, Pan QJ, Xia BH, Tang AQ (2007) J Phys Chem A 109:8809CrossRefGoogle Scholar
  36. 36.
    Zhang JP, Zhou X, Bai FQ, Zhang HX, Tang AQ (2009) Theor Chem Account 122:31CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jian-Po Zhang
    • 1
    • 3
  • Bao-Hui Xia
    • 1
    • 2
  • Li Jin
    • 3
  • Hong-Xing Zhang
    • 1
    Email author
  1. 1.State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical ChemistryJilin UniversityChangchunPeople’s Republic of China
  2. 2.College of ChemistryJilin UniversityChangchunPeople’s Republic of China
  3. 3.School of Chemical and Pharmaceutical EngineeringJilin Institute of Chemical TechnologyJilinPeople’s Republic of China

Personalised recommendations