Advertisement

Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 449–465 | Cite as

Transition metal oxide clusters with character of oxygen-centered radical: a DFT study

  • Yan-Xia Zhao
  • Xun-Lei Ding
  • Yan-Ping Ma
  • Zhe-Chen Wang
  • Sheng-Gui HeEmail author
Regular Article

Abstract

Density functional theory (DFT) calculations are applied to study the structure and bonding properties of groups 3–7 transition metal oxide clusters M x=1–3O y q and Scx=4–6O y q with 2y − nx + q = 1, in which n is the number of metal valence electrons and q is the charge number. These clusters include MO2, M 2O3 +, M 2O4 , and M 3O5 (M = Sc, Y, La); MO2 +, MO3 , M 2O4 +, M 2O5 , M 3O6 +, and M 3O7 (M = Ti, Zr, Hf), and so on. The obtained lowest energy structures of most of these clusters are with character of oxygen-centered radical (O·). That is, the clusters contain oxygen atom(s) with the unpaired electron being localized on the 2p orbital(s). Chromium and manganese oxide clusters (except CrO4 ) do not contain O· with the adopted DFT methods. The binding energies of the radical oxygen with the clusters are also calculated. The DFT results are supported by available experimental investigations and predict that a lot of other transition metal oxide clusters including those with mixed-metals (such as TiVO5 and CrVO6) may have high oxidative reactivity that has not been experimentally identified. The chemical structures of radical oxygen over V2O5/SiO2 and MoO3/SiO2 catalysts are suggested and the balance between high reactivity and low concentration of the radical oxygen in condensed phase catalysis is discussed.

Keywords

DFT Transition metal oxide clusters Bonding property Oxygen-centered radical 

Notes

Acknowledgments

This work was supported by the Chinese Academy of Sciences (Hundred Talents Fund), the National Natural Science Foundation of China (Nos. 20703048, 20803083, and 20933008), and the 973 Program (No. 2006CB932100).

Supplementary material

214_2010_732_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1668 kb)

References

  1. 1.
    Barteau MA (1996) Chem Rev 96:1413Google Scholar
  2. 2.
    Fierro GJL (2006) Metal oxides chemistry and applications. Taylor & Francis, LondonGoogle Scholar
  3. 3.
    Surnev S, Ramsey MG, Netzer FP (2003) Prog Surf Sci 73:117Google Scholar
  4. 4.
    Bell AT (2003) Science 299:1688Google Scholar
  5. 5.
    Martinez-Huerta MV, Gao X, Tian H, Wachs IE, Fierro JLG, Banares MA (2006) Catal Today 118:279Google Scholar
  6. 6.
    Li M, Shen J (2002) J Catal 205:248Google Scholar
  7. 7.
    Zhao C, Wachs IE (2006) Catal Today 118:332Google Scholar
  8. 8.
    Dunn JP, Stenger HG, Wachs IE (1999) Catal Today 51:301Google Scholar
  9. 9.
    Yamazoe S, Masutani Y, Teramura K, Hitomi Y, Shishido T, Tanaka T (2008) Appl Catal B Environ 83:123Google Scholar
  10. 10.
    Gabasch H, Knop-Gericke A, Schlögl R, Borasio M, Weilach C, Rupprechter G, Penner S, Jenewein B, Hayeka K, Klötzer B (2007) Phys Chem Chem Phys 9:533Google Scholar
  11. 11.
    Alvarez-Merino MA, Ribeiro MF, Silva JM, Carrasco-Marn F, Maldonado-Hdar FJ (2004) Environ Sci Technol 38:4664Google Scholar
  12. 12.
    Seiyama T, Nita K, Maehara T, Yamazoe N, Takita Y (1997) J Catal 49:164Google Scholar
  13. 13.
    Ushikubo T (2000) Catal Today 57:331Google Scholar
  14. 14.
    Shvets VA, Kazansky VB (1972) J Catal 25:123Google Scholar
  15. 15.
    Ben TY, Lunsford JH (1973) Chem Phys Lett 19:348Google Scholar
  16. 16.
    Liu RS, Iwamoto M, Lunsford JH (1982) J Chem Soc Chem Commun 78Google Scholar
  17. 17.
    Lipatkina NI, Shvets VA, Kazansky VB (1978) Kinet Katal 19:979Google Scholar
  18. 18.
    Liu HF, Liu RS, Liew KY, Johnson RE, Lunsford JH (1984) J Am Chem Soc 106:4117Google Scholar
  19. 19.
    Khan MM, Somorjai GA (1985) J Catal 91:263Google Scholar
  20. 20.
    Zhen KJ, Khan MM, Mak CH, Lewis KB, Somorjai GA (1985) J Catal 94:501Google Scholar
  21. 21.
    Ward MB, Lin MJ, Lunsford JH (1977) J Catal 50:306Google Scholar
  22. 22.
    Launay H, Loridant S, Nguyen DL, Volodin AM, Dubois JL, Millet JMM (2007) Catal Today 128:176Google Scholar
  23. 23.
    Parfenov MV, Starokon EV, Semikolenov SV, Panov GI (2009) J Catal 263:173Google Scholar
  24. 24.
    Chernyavsky VS, Pirutko LV, Uriarte AK, Kharitonov AS, Panov GI (2007) J Catal 245:466Google Scholar
  25. 25.
    Dubkov KA, Ovanesyan NS, Shteinman AA, Starokon EV, Panov GI (2002) J Catal 207:341Google Scholar
  26. 26.
    Yuranov I, Bulushev DA, Renken A, Kiwi-Minsker L (2007) Appl Catal A 319:128Google Scholar
  27. 27.
    Schröder D, Schwarz H (1995) Angew Chem Int Ed 34:1973Google Scholar
  28. 28.
    Johnson JRT, Panas I (2000) Inorg Chem 39:3192Google Scholar
  29. 29.
    Waters T, O’Hair RAJ, Wedd AG (2003) J Am Chem Soc 125:3384Google Scholar
  30. 30.
    Justes DR, Moore NA, Castleman AW Jr (2004) J Phys Chem B 108:3855Google Scholar
  31. 31.
    Fu G, Xu X, Wan HL (2006) Catal Today 117:133Google Scholar
  32. 32.
    Feyel S, Scharfenberg L, Daniel C, Hartl H, Schröder D, Schwarz H (2007) J Phys Chem A 111:3278Google Scholar
  33. 33.
    Wang ZC, Ding XL, Ma YP, Cao H, Wu XN, Zhao YX, He SG (2009) Chin Sci Bull 54:2814Google Scholar
  34. 34.
    Ma YP, Xue W, Wang ZC, Ge MF, He SG (2008) J Phys Chem A 112:3731Google Scholar
  35. 35.
    Ding XL, Xue W, Ma YP, Zhao YX, Wu XN, He SG (2010) J Phys Chem C 114:3161Google Scholar
  36. 36.
    Li HB, Tian SX, Yang JL (2009) Chem Eur J 41:10747Google Scholar
  37. 37.
    Dong F, Heinbuch S, Xie Y, Rocca JJ, Bernstein ER, Wang ZC, Deng K, He SG (2008) J Am Chem Soc 130:1932Google Scholar
  38. 38.
    He SG, Xie Y, Dong F, Heinbuch S, Jakubikova E, Rocca JJ, Bernstein ER (2008) J Phys Chem A 112:11067Google Scholar
  39. 39.
    Dong F, Heinbuch S, Xie Y, Bernstein ER, Rocca JJ, Wang ZC, Ding XL, He SG (2009) J Am Chem Soc 131:1057Google Scholar
  40. 40.
    Zemski KA, Justes DR, Castleman AW Jr (2001) J Phys Chem A 105:10237Google Scholar
  41. 41.
    Justes DR, Mitrić R, Moore NA, Bonačić-Koutecký V, Castleman AW Jr (2003) J Am Chem Soc 125:6289Google Scholar
  42. 42.
    Justes DR, Castleman AW Jr, Mitrić R, Bonačić-Koutecký V (2003) Eur Phys J D 24:331Google Scholar
  43. 43.
    Moore NA, Mitrić R, Justes DR, Bonačić-Koutecký V, Castleman AW Jr (2006) J Phys Chem B 110:3015Google Scholar
  44. 44.
    Bell RC, Zemski KA, Kerns KP, Deng HT, Castleman AW Jr (1998) J Phys Chem A 102:1733Google Scholar
  45. 45.
    Feyel S, Döbler J, Schröder D, Sauer J, Schwarz H (2006) Angew Chem Int Ed 45:4681Google Scholar
  46. 46.
    Feyel S, Schröder D, Schwarz H (2006) J Phys Chem A 110:2647Google Scholar
  47. 47.
    Zemski KA, Justes DR, Castleman AW Jr (2002) J Phys Chem B 106:6136Google Scholar
  48. 48.
    Kretzschmar I, Fiedler A, Harvey JN, Schröder D, Schwarz H (1997) J Phys Chem A 101:6252Google Scholar
  49. 49.
    Irikura KK, Beauchamp JL (1989) J Am Chem Soc 111:75Google Scholar
  50. 50.
    Fialko EF, Kikhtenko AV, Goncharov VB, Zamaraev KI (1997) J Phys Chem A 101:8607Google Scholar
  51. 51.
    Johnson GE, Tyo EC, Castleman AW Jr (2008) Proc Natl Acad Sci USA 105:18108Google Scholar
  52. 52.
    Harvey JN, Diefenbach M, Schröder D, Schwarz H (1999) Int J Mass Spectrom 182/183:85Google Scholar
  53. 53.
    Johnson GE, Mitrić R, Tyo EC, Bonačić-Koutecký V, Castleman AW Jr (2008) J Am Chem Soc 130:13912Google Scholar
  54. 54.
    Wu XN, Zhao YX, He SG, Ding XL (2009) Chin J Chem Phys 22:635Google Scholar
  55. 55.
    Schröder D, Roithová J (2006) Angew Chem Int Ed 45:5705Google Scholar
  56. 56.
    Feyel S, Döbler J, Höckendorf R, Beyer MK, Sauer J, Schwarz H (2008) Angew Chem Int Ed 47:1946Google Scholar
  57. 57.
    Sierka M, Döbler J, Sauer J, Santambrogio G, Brümmer M, Wöste L, Janssens E, Meijer G, Asmis KR (2007) Angew Chem Int Ed 46:3372Google Scholar
  58. 58.
    Bell RC, Castleman AW Jr (2002) J Phys Chem A 106:9893Google Scholar
  59. 59.
    Li SH, Mirabal A, Demuth J, Wöste L, Siebert T (2008) J Am Chem Soc 130:16832Google Scholar
  60. 60.
    Johnson GE, Mitrić R, Nössler M, Tyo EC, Bonačić-Koutecký V, Castleman AW Jr (2009) J Am Chem Soc 131:5460Google Scholar
  61. 61.
    Johnson GE, Mitrić R, Bonačić-Koutecký V, Castleman AW Jr (2009) Chem Phys Lett 475:1Google Scholar
  62. 62.
    Xue W, Yin S, Ding XL, He SG, Ge MF (2009) J Phys Chem A 113:5302Google Scholar
  63. 63.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PM W, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision B.05. Gaussian Inc, WallingfordGoogle Scholar
  64. 64.
    Becke AD (1988) Phys Rev A 38:3098Google Scholar
  65. 65.
    Becke AD (1993) J Chem Phys 98:5648Google Scholar
  66. 66.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785Google Scholar
  67. 67.
    Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829Google Scholar
  68. 68.
    Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123Google Scholar
  69. 69.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297Google Scholar
  70. 70.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F, NBO, version 3.1Google Scholar
  71. 71.
    Li S, Dixon DA (2006) J Phys Chem A 110:6231Google Scholar
  72. 72.
    Li S, Dixon DA (2007) J Phys Chem A 111:11908Google Scholar
  73. 73.
    Zhai HJ, Li S, Dixon DA, Wang LS (2008) J Am Chem Soc 130:5167Google Scholar
  74. 74.
    Li S, Zhai HJ, Wang LS, Dixon DA (2009) J Phys Chem A 113:11273Google Scholar
  75. 75.
    Li S, Dixon DA (2007) J Phys Chem A 111:11093Google Scholar
  76. 76.
    Li S, Hennigan JM, Dixon DA, Peterson KA (2009) J Phys Chem A 113:7861Google Scholar
  77. 77.
    Perdew JP, Wang Y (1991) Phys Rev B 45:13244Google Scholar
  78. 78.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479Google Scholar
  79. 79.
    Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718Google Scholar
  80. 80.
    Lee TJ, Taylor PR (1989) Int J Quantum Chem S23:199Google Scholar
  81. 81.
    Huber K, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of Diatomic Molecules. Van Nostrand Rheinhold, NewYork. See also Chemistry Webbook from the NIST website (http://nist.gov/)
  82. 82.
    Gordon RM, Merer AJ (1980) Can J Phys 58:642Google Scholar
  83. 83.
    Hamrick YM, Taylor S, Morse MD (1991) J Mol Spectrosc 146:274Google Scholar
  84. 84.
    Yao C, Guan W, Song P, Su ZM, Feng JD, Yan LK, Wu ZJ (2007) Theor Chem Acc 117:115Google Scholar
  85. 85.
    Gutsev GL, Andrews L, Bauschlicher CW Jr (2003) Theor Chem Acc 109:298Google Scholar
  86. 86.
    Song P, Guan W, Yao C, Su ZM, Wu ZJ, Feng JD, Yan LK (2007) Theor Chem Acc 117:407Google Scholar
  87. 87.
    Loocka HP, Simard B, Wallin S, Linton C (1998) J Chem Phys 109:8980Google Scholar
  88. 88.
    Pedley JB, Marshall EM (1983) J Phys Chem Ref Data 12:967Google Scholar
  89. 89.
    Gole JL, Chalek CL (1976) J Chem Phys 65:4384Google Scholar
  90. 90.
    Ackermann RJ, Rauh EG (1974) J Chem Phys 60:2266Google Scholar
  91. 91.
    Smoes S, Drowart J, Myers CE (1976) J Chem Thermody 8:225Google Scholar
  92. 92.
    Hinton CS, Li FX, Armentrout PB (2009) Int J Mass Spectrom 280:226Google Scholar
  93. 93.
    Clemmer DE, Elkind JL, Aristov N, Armentrout PB (1991) J Chem Phys 95:3387Google Scholar
  94. 94.
    Harrington J, Weisshaar JC (1992) J Chem Phys 97:2809Google Scholar
  95. 95.
    Dyke JM, Gravenor BWJ, Lewis RA, Morris A (1983) J Chem Soc Faraday Trans 79:2083Google Scholar
  96. 96.
    Armentrout PB, Halle LF, Beauchamp JL (1982) J Chem Phys 76:2449Google Scholar
  97. 97.
    Rauh EG, Ackermann RJ (1974) J Chem Phys 60:1396Google Scholar
  98. 98.
    Rauh EG, Ackermann RJ (1975) J Chem Phys 62:1584Google Scholar
  99. 99.
    Merritt JM, Bondybey VE, Heaven MC (2009) J Chem Phys 109:8980Google Scholar
  100. 100.
    Dyke JM, Ellis AM, Feher M, Morris A, Paul AJ, Stevens JCH (1987) J Chem Soc Faraday Trans 83:1555Google Scholar
  101. 101.
    Tonkyn RG, Winniczek JW, White MG (1989) Chem Phys Lett 164:137Google Scholar
  102. 102.
    Wu HB, Wang LS (1998) J Phys Chem A 102:9129Google Scholar
  103. 103.
    Thomas OC, Xu SJ, Lippa TP, Bowen KH (1999) J Cluster Sci 10:525Google Scholar
  104. 104.
    Green SME, Alex S, Fleischer NL, Millam EL, Marcy TP, Leopoldf DG (2001) J Chem Phys 114:2653Google Scholar
  105. 105.
    Gunion RF, Dixon-Warren SJ, Lineberger WC (1996) J Chem Phys 104:1765Google Scholar
  106. 106.
    Zheng WJ, Li X, Eustis S, Bowen K (2008) Chem Phys Lett 130:144503Google Scholar
  107. 107.
    Ervin KM, Anusiewicz W, Skurski P, Simons J, Lineberger WC (2003) J Phys Chem A 107:8521Google Scholar
  108. 108.
    Li S, Dixon DA (2008) J Phys Chem A 112:6646Google Scholar
  109. 109.
    Vyboishchikov SF, Sauer J (2001) J Phys Chem A 105:8588Google Scholar
  110. 110.
    Ding XL, Xue W, Ma YP, Wang ZC, He SG (2009) J Chem Phys 130:014303Google Scholar
  111. 111.
    Dong F, Heinbuch S, He SG, Xie Y, Rocca JJ, Bernstein ER (2006) J Chem Phys 125:164318Google Scholar
  112. 112.
    Balducci G, Gigli G, Guido M (1981) J Chem Soc Faraday Trans II 77:1107Google Scholar
  113. 113.
    Zhai HJ, Wang LS (2008) J Am Chem Soc 2007 129:3022Google Scholar
  114. 114.
    Asmis KR, Sauer J (2007) Mass Spectrom Rev 26:542Google Scholar
  115. 115.
    Xie Y, He SG, Dong F, Bernstein ER (2008) J Chem Phys 128:044306Google Scholar
  116. 116.
    Calatayud M, Silvi B, Andrés J, Beltrán A (2001) Chem Phys Lett 333:493Google Scholar
  117. 117.
    Gong Y, Zhou MF (2009) Chem Rev 109:6765Google Scholar
  118. 118.
    Wang ZC, Xue W, Ma YP, Ding XL, He SG, Dong F, Heinbuch S, Rocca JJ, Bernstein ER (2008) J Phys Chem A 112:5984Google Scholar
  119. 119.
    Xue W, Wang ZC, He SG, Xie Y, Bernstein ER (2008) J Am Chem Soc 130:15879Google Scholar
  120. 120.
    Rozanska X, Fortrie R, Sauer J (2007) J Phys Chem C 111:6041Google Scholar
  121. 121.
    Fielicke A, Meijer G, von Helden G (2003) J Am Chem Soc 125:3659Google Scholar
  122. 122.
    Brümmer M, Kaposta C, Santambrogio G, Asmis KR (2003) J Chem Phys 119:12700Google Scholar
  123. 123.
    Gutsev GL, Jena P, Zhai HJ, Wang LS (2001) J Chem Phys 115:7935Google Scholar
  124. 124.
    Zhai HJ, Kiran B, Cui LF, Li X, Dixon DA, Wang LS (2004) J Am Chem Soc 126:16134Google Scholar
  125. 125.
    Uzunova EL, Mikosch H, Nikolov GS (2008) J Chem Phys 128:094307Google Scholar
  126. 126.
    Andrews L, Zhou MF, Chertihin GV, Bauschlicher CW Jr (1999) J Phys Chem A 103:6525Google Scholar
  127. 127.
    Lee EPF, Dyke JM, Mok DKW, Chau FT (2008) J Phys Chem A 112:4511Google Scholar
  128. 128.
    Calatayud M, Silvi B, Andrés J, Beltrán A (2001) Chem Phys Lett 333:493Google Scholar
  129. 129.
    Vyboishchikov SF, Sauer J (2000) J Phys Chem A 104:10913Google Scholar
  130. 130.
    Oliveira JA, Almeida WBD, Duarte HA (2003) Chem Phys Lett 372:650Google Scholar
  131. 131.
    Gong Y, Wang GJ, Zhou MF (2008) J Phys Chem A 112:4936Google Scholar
  132. 132.
    Molek KS, Reed ZD, Ricks AM, Duncan MA (2007) J Phys Chem A 111:8080Google Scholar
  133. 133.
    Reed ZD, Duncan MA (2008) J Phys Chem A 112:5354Google Scholar
  134. 134.
    Asmis KR, Meijer G, Brümmer M, Kaposta C, Santambrogio G, Wöste L, Sauer J (2004) J Chem Phys 120:6461Google Scholar
  135. 135.
    Jakubikova E, Rappé AK, Bernstein ER (2007) J Phys Chem A 111:12938Google Scholar
  136. 136.
    Zhai HJ, Wang LS (2002) J Chem Phys 117:7882Google Scholar
  137. 137.
    Santambrogio G, Brümmer M, Wöste L, Döbler J, Sierka M, Sauer J, Meijer G, Asmis KR (2008) Phys Chem Chem Phys 10:3992Google Scholar
  138. 138.
    Knight LB Jr, Babb R, Ray M, Banisaukas TJ, Russon L, Dailey RS, Davidson ER (1996) J Chem Phys 105:10237Google Scholar
  139. 139.
    Huang X, Zhai HJ, Li J, Wang LS (2006) J Phys Chem A 110:85Google Scholar
  140. 140.
    Zhai HJ, Huang X, Waters T, Wang XB, O’Hair RAJ, Wedd AG, Wang LS (2005) J Phys Chem A 109:10512Google Scholar
  141. 141.
    Zemski KA, Justes DR, Bell RC, Castleman AW Jr (2001) J Phys Chem A 105:4410Google Scholar
  142. 142.
    Zemski KA, Bell RC, Castleman AW Jr (2000) J Phys Chem A 104:5732Google Scholar
  143. 143.
    Espinosa-García J, Corchado JC (2000) J Chem Phys 112:5731Google Scholar
  144. 144.
    Fokin AA, Schreiner PR (2002) Chem Rev 102:1551Google Scholar
  145. 145.
    Sander, SP, Friedl RR, Ravishankara AR, Golden DM, Kolb CE, Kurylo MJ, Huie RE, Orkin VL, Molina MJ, Moortgat GK, Finlayson-Pitts BJ (2003) Chemical kinetics and photochemical data for use in atmospheric studies: evaluation Number 14; JPL Publication 02-25, National Aeronautics and Space Administration, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CAGoogle Scholar
  146. 146.
    Dobbs KD, Dixon DA, Komornicki A (1993) J Chem Phys 98:8852Google Scholar
  147. 147.
    Ma JB, Wu XN, Zhao YX, Ding XL, He SG (2010) Experimental and theoretical study of hydrogen atom abstraction from C2H6 and C4H10 by zirconium oxide clusters anions. Chin J Chem Phys (submitted)Google Scholar
  148. 148.
    Ma YP, Ding XL, Zhao YX, He SG (2010) Chem Phys Chem. doi: 10.1002/cphc.200900903
  149. 149.
    Zhao YX, Wu XN, Wang ZC, He SG, Ding XL (2010) Chem Commun. doi: 10.1039/b924603g
  150. 150.
    Iwamoto M, Hlrata I, Matsukaml K, Kagawa S (1983) J Phys Chem 87:903Google Scholar
  151. 151.
    Ruszel M, Grzybowska B, Gąsior M, Samson K, Gressel I, Stoch J (2005) Catal Today 99:151Google Scholar
  152. 152.
    Tohver HT, Henderson B, Chen Y, Abraham MM (1972) Phys Rev B 5:3276Google Scholar
  153. 153.
    Ito T, Lunsford JH (1985) Nature 314:721Google Scholar
  154. 154.
    Nolan M, Watson GW (2005) Surf Sci 586:25Google Scholar
  155. 155.
    Rane VH, Chaudhari ST, Choudhary VR (2008) J Nat Gas Chem 17:313Google Scholar
  156. 156.
    Wang WG, Wang ZC, Yin S, He SG, Ge MF (2007) Chin J Chem Phys 20:412Google Scholar
  157. 157.
    Yin S, Ma YP, Du L, He SG, Ge MF (2008) Chin Sci Bull 53:3829Google Scholar
  158. 158.
    Döbler J, Pritzsche M, Sauer J (2005) J Am Chem Soc 127:10861Google Scholar
  159. 159.
    Goodrow A, Bell AT (2007) J Phys Chem C 111:14753Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yan-Xia Zhao
    • 1
    • 2
  • Xun-Lei Ding
    • 1
  • Yan-Ping Ma
    • 1
  • Zhe-Chen Wang
    • 1
    • 2
  • Sheng-Gui He
    • 1
    Email author
  1. 1.Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of ChemistryChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.Graduate School of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations