Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 443–448 | Cite as

Theoretical consideration of the anomalous temperature dependence of the surface tension of pure liquid gallium

  • Ahmed Ayyad
  • Fathi AqraEmail author
Regular Article


The surface tension of pure liquid gallium in the temperature range 303–503 K (303 K is the melting point) was previously measured using the noninvasive method of capillary wave spectroscopy (CWS). The result of this experiment showed that the value of surface tension increases from 303 to 345 K indicating a negative surface excess entropy (S σ), and decreases linearly from ~345 to 503 K confirming a negative slope, and thus a positive S σ. This unusual behavior of Ga is not known for other liquid metals such as Bi, Pb, Hg, Sn and Al. The reported experimental behavior is modeled here. A theoretical equation for calculating the surface tension of liquid Ga, based upon formulating a proper partition function that includes the rotational part, is derived and described. The theory predicted no maximum in the temperature-dependence of the surface tension, as seen in the experiment, where the analysis was done over a large temperature range (325–503 K). The value obtained from this mathematical expression indicates that the temperature variation of surface tension has no positive slope within the temperature range 303–345 K. At T > 345 K, the surface tension shows the usual linear temperature-dependence with a negative slope. Therefore, the equation is only applicable for the latter temperature range. A comparison between the theoretical and experimental values of surface tension of liquid Ga is discussed.


Surface chemistry Surface tension Gallium 


  1. 1.
    Christmann K (1991) Surface physical chemistry. Steinkopf, DarmstadtGoogle Scholar
  2. 2.
    Borg RJ, Dienes GJ (1992) The physical chemistry of solids. Academic Press., San DiegoGoogle Scholar
  3. 3.
    Widom B (1978) J Chem Phys 68:3878CrossRefGoogle Scholar
  4. 4.
    Cahn JW (1977) J Chem Phys 66:3667CrossRefGoogle Scholar
  5. 5.
    Dietrich S (1988) In: Domb C, Lebowitz J (eds) Phase transitions and critical phenomena. Academic Press, LondonGoogle Scholar
  6. 6.
    Charvolin J, Joanny JF, Zinn-Justin J (eds) (1990) Liquids at interfaces. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Dietrich S, Findenegg G, Freyland W (eds) (1994) Phase transitions at interfaces. In: Proceedings Bunsen discussion meeting. Ber Bunsenges Phys Chem 98(3)Google Scholar
  8. 8.
    Chatain D, Wynblatt P (1996) Surf Sci 345:85CrossRefGoogle Scholar
  9. 9.
    Earnshaw JC, Hughes CJ (1992) Phys Rev A 46:4494CrossRefGoogle Scholar
  10. 10.
    Earnshaw JC, Hughes CJ (1993) Prog Colloid Polym Sci 93:108CrossRefGoogle Scholar
  11. 11.
    Ayyad AH, Freyland W (2002) Surf Sci 506:1CrossRefGoogle Scholar
  12. 12.
    Ayyad AH, Mechdiev I, Freyland W (2002) Chem Phys Lett 359:326CrossRefGoogle Scholar
  13. 13.
    Freyland W, Ayyad AH, Mechdiev I (2003) J Phys Condens Matter 15:S151CrossRefGoogle Scholar
  14. 14.
    Kolevzon V (1999) J Phys Condens Matter 11:8785CrossRefGoogle Scholar
  15. 15.
    Serre C, Wynblatt P, Chatain D (1998) Surf Sci 415:336CrossRefGoogle Scholar
  16. 16.
    Eyring H, JHON MS (1969) Significant liquid structure. Wiley, New YorkGoogle Scholar
  17. 17.
    Gong XG, Chiarotti GL, Parrinello M, Tosatti E (1993) Europhys Lett 21:469CrossRefGoogle Scholar
  18. 18.
    Huisman WJ, Peters JF, Zwanenburg MJ, de Vries SA, Derry TE, Abernathy D, van der Veen JF (1997) Nature 390:379CrossRefGoogle Scholar
  19. 19.
    Schoutens JE (1989) J Mater Sci 24:2681CrossRefGoogle Scholar
  20. 20.
    Hardy SC (1985) J Cryst Growth 71:602CrossRefGoogle Scholar
  21. 21.
    Suk Hyung, Chang Seihun (1964) J Korean Chem Soc 8:121Google Scholar
  22. 22.
    Lee HaiBang, Pak Hyungsuk, Chang Seihun (1968) Daehan Hwahak Hwoejee 12:32Google Scholar
  23. 23.
    Ahn WoonSun (1966) Daehan Hwahak Hwoejee 10:136Google Scholar
  24. 24.
    Ree TS, Ree T, Eyring H (1964) J Chem Phys 41:524CrossRefGoogle Scholar
  25. 25.
    Park Sunghye, Pak Hyungsuk, Chang Seihun (1964) Daehan Hwahak Hwoejee 8:183Google Scholar
  26. 26.
    LU WC, JHON MS, Ree T, Eyring H (1967) J Chem Phys 46:1075CrossRefGoogle Scholar
  27. 27.
    Masanori I, Takeda S, Tetsuo U (1992) J Phys Soc Jpn 61:3203CrossRefGoogle Scholar
  28. 28.
    Alchagirov BB, Mazgovoi AG (2005) High temperature 43:791CrossRefGoogle Scholar
  29. 29.
    Keene BJ (1993) Int Mater Rev 38:157Google Scholar
  30. 30.
    Mills KC, Su YC (2006) Int Mater Rev 51:329CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of Science and TechnologyHebron UniversityHebronPalestine

Personalised recommendations